{"title":"关于Natário双曲空间中的minkowski型不等式","authors":"Yong Wei","doi":"10.1112/blms.70106","DOIUrl":null,"url":null,"abstract":"<p>We apply Brendle–Guan–Li's inverse curvature–type flow to prove a family of sharp inequalities for curvature integrals and their rigidity results for hypersurfaces in the hyperbolic space. In particular, we provide a new short proof of Natário's Minkowski-type inequality and its rigidity for convex surfaces in the hyperbolic 3-space.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2477-2488"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Natário's Minkowski-type inequality in the hyperbolic space\",\"authors\":\"Yong Wei\",\"doi\":\"10.1112/blms.70106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We apply Brendle–Guan–Li's inverse curvature–type flow to prove a family of sharp inequalities for curvature integrals and their rigidity results for hypersurfaces in the hyperbolic space. In particular, we provide a new short proof of Natário's Minkowski-type inequality and its rigidity for convex surfaces in the hyperbolic 3-space.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 8\",\"pages\":\"2477-2488\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70106\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70106","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On Natário's Minkowski-type inequality in the hyperbolic space
We apply Brendle–Guan–Li's inverse curvature–type flow to prove a family of sharp inequalities for curvature integrals and their rigidity results for hypersurfaces in the hyperbolic space. In particular, we provide a new short proof of Natário's Minkowski-type inequality and its rigidity for convex surfaces in the hyperbolic 3-space.