Oleksiy Klurman, Igor E. Shparlinski, Joni Teräväinen
{"title":"On Artin's conjecture on average and short character sums","authors":"Oleksiy Klurman, Igor E. Shparlinski, Joni Teräväinen","doi":"10.1112/blms.70103","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>a</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$N_a(x)$</annotation>\n </semantics></math> denote the number of primes up to <span></span><math>\n <semantics>\n <mi>x</mi>\n <annotation>$x$</annotation>\n </semantics></math> for which the integer <span></span><math>\n <semantics>\n <mi>a</mi>\n <annotation>$a$</annotation>\n </semantics></math> is a primitive root. We show that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>a</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$N_a(x)$</annotation>\n </semantics></math> satisfies the asymptotic predicted by Artin's conjecture for almost all <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>⩽</mo>\n <mi>a</mi>\n <mo>⩽</mo>\n <mi>exp</mi>\n <mo>(</mo>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>log</mi>\n <mi>log</mi>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mn>2</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$1\\leqslant a\\leqslant \\exp ((\\log \\log x)^2)$</annotation>\n </semantics></math>. This improves on a result of Stephens (1969). A key ingredient in the proof is a new short character sum estimate over the integers, improving on the range of a result of Garaev (2006).</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2429-2443"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70103","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70103","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let denote the number of primes up to for which the integer is a primitive root. We show that satisfies the asymptotic predicted by Artin's conjecture for almost all . This improves on a result of Stephens (1969). A key ingredient in the proof is a new short character sum estimate over the integers, improving on the range of a result of Garaev (2006).