On Artin's conjecture on average and short character sums

IF 0.9 3区 数学 Q2 MATHEMATICS
Oleksiy Klurman, Igor E. Shparlinski, Joni Teräväinen
{"title":"On Artin's conjecture on average and short character sums","authors":"Oleksiy Klurman,&nbsp;Igor E. Shparlinski,&nbsp;Joni Teräväinen","doi":"10.1112/blms.70103","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>a</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$N_a(x)$</annotation>\n </semantics></math> denote the number of primes up to <span></span><math>\n <semantics>\n <mi>x</mi>\n <annotation>$x$</annotation>\n </semantics></math> for which the integer <span></span><math>\n <semantics>\n <mi>a</mi>\n <annotation>$a$</annotation>\n </semantics></math> is a primitive root. We show that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>a</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$N_a(x)$</annotation>\n </semantics></math> satisfies the asymptotic predicted by Artin's conjecture for almost all <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>⩽</mo>\n <mi>a</mi>\n <mo>⩽</mo>\n <mi>exp</mi>\n <mo>(</mo>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>log</mi>\n <mi>log</mi>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mn>2</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$1\\leqslant a\\leqslant \\exp ((\\log \\log x)^2)$</annotation>\n </semantics></math>. This improves on a result of Stephens (1969). A key ingredient in the proof is a new short character sum estimate over the integers, improving on the range of a result of Garaev (2006).</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2429-2443"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70103","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70103","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let N a ( x ) $N_a(x)$ denote the number of primes up to x $x$ for which the integer a $a$ is a primitive root. We show that N a ( x ) $N_a(x)$ satisfies the asymptotic predicted by Artin's conjecture for almost all 1 a exp ( ( log log x ) 2 ) $1\leqslant a\leqslant \exp ((\log \log x)^2)$ . This improves on a result of Stephens (1969). A key ingredient in the proof is a new short character sum estimate over the integers, improving on the range of a result of Garaev (2006).

Abstract Image

Abstract Image

Abstract Image

论马丁关于平均和短字符和的猜想
设N a (x) $N_a(x)$表示x以下质数的个数$x$其中整数a$a$是一个原始根。我们证明了na (x) $N_a(x)$对于几乎所有的1≤a都满足由Artin猜想预测的渐近≤exp ((log log x) 2) $1\leqslant a\leqslant \exp ((\log \log x)^2)$。这改进了Stephens(1969)的结果。证明中的一个关键因素是一个新的整数短字符和估计,改进了Garaev(2006)的结果的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信