连通有限图上p$ p$ -拉普拉斯算子的特征值估计

IF 0.9 3区 数学 Q2 MATHEMATICS
Lin Feng Wang
{"title":"连通有限图上p$ p$ -拉普拉斯算子的特征值估计","authors":"Lin Feng Wang","doi":"10.1112/blms.70104","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider eigenvalue estimate for the <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-Laplace operator <span></span><math>\n <semantics>\n <msub>\n <mi>▵</mi>\n <mi>p</mi>\n </msub>\n <annotation>$\\triangle _p$</annotation>\n </semantics></math> on a connected finite graph with the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>CD</mi>\n <mi>p</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>m</mi>\n <mo>,</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathrm{CD}_p(m,0)$</annotation>\n </semantics></math> condition for <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>&gt;</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$p&gt;1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$m&gt;0$</annotation>\n </semantics></math>. We first establish elliptic gradient estimates for solutions to the eigenvalue equation. Then we establish a lower bound estimate for the first nonzero eigenvalue of <span></span><math>\n <semantics>\n <msub>\n <mi>▵</mi>\n <mi>p</mi>\n </msub>\n <annotation>$\\triangle _p$</annotation>\n </semantics></math>, which is a generalization not only of the eigenvalue estimate for the manifold setting, but also of the eigenvalue estimate for the <span></span><math>\n <semantics>\n <mi>μ</mi>\n <annotation>$\\mu$</annotation>\n </semantics></math>-Laplace operator <span></span><math>\n <semantics>\n <msub>\n <mi>▵</mi>\n <mi>μ</mi>\n </msub>\n <annotation>$\\triangle _{\\mu }$</annotation>\n </semantics></math> on the graph with the <span></span><math>\n <semantics>\n <mrow>\n <mi>CD</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>,</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathrm{CD}(m,0)$</annotation>\n </semantics></math> condition.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2444-2461"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eigenvalue estimate for the \\n \\n p\\n $p$\\n -Laplace operator on a connected finite graph\",\"authors\":\"Lin Feng Wang\",\"doi\":\"10.1112/blms.70104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider eigenvalue estimate for the <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-Laplace operator <span></span><math>\\n <semantics>\\n <msub>\\n <mi>▵</mi>\\n <mi>p</mi>\\n </msub>\\n <annotation>$\\\\triangle _p$</annotation>\\n </semantics></math> on a connected finite graph with the <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>CD</mi>\\n <mi>p</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>,</mo>\\n <mn>0</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathrm{CD}_p(m,0)$</annotation>\\n </semantics></math> condition for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>&gt;</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$p&gt;1$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$m&gt;0$</annotation>\\n </semantics></math>. We first establish elliptic gradient estimates for solutions to the eigenvalue equation. Then we establish a lower bound estimate for the first nonzero eigenvalue of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>▵</mi>\\n <mi>p</mi>\\n </msub>\\n <annotation>$\\\\triangle _p$</annotation>\\n </semantics></math>, which is a generalization not only of the eigenvalue estimate for the manifold setting, but also of the eigenvalue estimate for the <span></span><math>\\n <semantics>\\n <mi>μ</mi>\\n <annotation>$\\\\mu$</annotation>\\n </semantics></math>-Laplace operator <span></span><math>\\n <semantics>\\n <msub>\\n <mi>▵</mi>\\n <mi>μ</mi>\\n </msub>\\n <annotation>$\\\\triangle _{\\\\mu }$</annotation>\\n </semantics></math> on the graph with the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>CD</mi>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>,</mo>\\n <mn>0</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathrm{CD}(m,0)$</annotation>\\n </semantics></math> condition.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 8\",\"pages\":\"2444-2461\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70104\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70104","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有CD p (m)的连通有限图上p$ p$ -拉普拉斯算子p_p $\三角形_p$的特征值估计0)$ \ mathm {CD}_p(m,0)$ condition for p >;1$ and m >;0$ m>0$。我们首先建立了特征值方程解的椭圆梯度估计。然后,我们建立了第一个非零特征值的下界估计,该估计不仅是流形设定的特征值估计的推广,也讨论了μ $\mu$ -拉普拉斯算子在具有CD (m,0)$ \mathrm{CD}(m,0)$条件的图上的μ $\triangle _{\mu}$的特征值估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Eigenvalue estimate for the 
         
            p
            $p$
         -Laplace operator on a connected finite graph

Eigenvalue estimate for the 
         
            p
            $p$
         -Laplace operator on a connected finite graph

Eigenvalue estimate for the 
         
            p
            $p$
         -Laplace operator on a connected finite graph

Eigenvalue estimate for the p $p$ -Laplace operator on a connected finite graph

In this paper, we consider eigenvalue estimate for the p $p$ -Laplace operator p $\triangle _p$ on a connected finite graph with the CD p ( m , 0 ) $\mathrm{CD}_p(m,0)$ condition for p > 1 $p>1$ and m > 0 $m>0$ . We first establish elliptic gradient estimates for solutions to the eigenvalue equation. Then we establish a lower bound estimate for the first nonzero eigenvalue of p $\triangle _p$ , which is a generalization not only of the eigenvalue estimate for the manifold setting, but also of the eigenvalue estimate for the μ $\mu$ -Laplace operator μ $\triangle _{\mu }$ on the graph with the CD ( m , 0 ) $\mathrm{CD}(m,0)$ condition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信