Heisenberg uniqueness pairs and the wave equation

IF 0.9 3区 数学 Q2 MATHEMATICS
Shanlin Huang, Jiaqi Yu
{"title":"Heisenberg uniqueness pairs and the wave equation","authors":"Shanlin Huang,&nbsp;Jiaqi Yu","doi":"10.1112/blms.70095","DOIUrl":null,"url":null,"abstract":"<p>The concept of the Heisenberg uniqueness pair <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>Γ</mi>\n <mo>,</mo>\n <mi>Λ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\Gamma, \\Lambda)$</annotation>\n </semantics></math> was introduced by Hedenmalm and Montes-Rodríguez as a variant of the uncertainty principle for the Fourier transform. The main results in Hedenmalm and Montes-Rodríguez (Ann. of Math. (2) <b>173</b> (2011), 1507–1527) concern the hyperbola <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Γ</mi>\n <mi>ε</mi>\n </msub>\n <mo>=</mo>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>x</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>x</mi>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>∈</mo>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n <mo>,</mo>\n <mspace></mspace>\n <msub>\n <mi>x</mi>\n <mn>1</mn>\n </msub>\n <msub>\n <mi>x</mi>\n <mn>2</mn>\n </msub>\n <mo>=</mo>\n <mi>ε</mi>\n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation>$\\Gamma _{\\epsilon }=\\lbrace (x_1, x_2)\\in \\mathbb {R}^2,\\, x_1x_2=\\epsilon \\rbrace$</annotation>\n </semantics></math> (<span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo>≠</mo>\n <mi>ε</mi>\n <mo>∈</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$0\\ne \\epsilon \\in \\mathbb {R}$</annotation>\n </semantics></math>) and lattice-crosses <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Λ</mi>\n <mrow>\n <mi>α</mi>\n <mi>β</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mi>α</mi>\n <mi>Z</mi>\n <mo>×</mo>\n <mrow>\n <mo>{</mo>\n <mn>0</mn>\n <mo>}</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>∪</mo>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mo>{</mo>\n <mn>0</mn>\n <mo>}</mo>\n </mrow>\n <mo>×</mo>\n <mi>β</mi>\n <mi>Z</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Lambda _{\\alpha \\beta }=(\\alpha \\mathbb {Z}\\times \\lbrace 0\\rbrace)\\cup (\\lbrace 0\\rbrace \\times \\beta \\mathbb {Z})$</annotation>\n </semantics></math> (<span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>,</mo>\n <mi>β</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\alpha, \\beta &gt;0$</annotation>\n </semantics></math>), where it is proved that <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>Γ</mi>\n <mi>ε</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>Λ</mi>\n <mrow>\n <mi>α</mi>\n <mi>β</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\Gamma _{\\epsilon }, \\Lambda _{\\alpha \\beta })$</annotation>\n </semantics></math> is a Heisenberg uniqueness pair if and only if <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mi>β</mi>\n <mo>⩽</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mo>|</mo>\n <mi>ε</mi>\n <mo>|</mo>\n </mrow>\n <annotation>$\\alpha \\beta \\leqslant 1/|\\epsilon |$</annotation>\n </semantics></math>. In this paper, we study the endpoint case (<span></span><math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\epsilon =0$</annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <msub>\n <mi>Γ</mi>\n <mi>ε</mi>\n </msub>\n <annotation>$\\Gamma _{\\epsilon }$</annotation>\n </semantics></math>) and investigate the minimal information required on the zero set <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> to form such a pair. When <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> is contained in the union of two curves in the plane, we provide characterizations using dynamical system conditions. The situation differs in higher dimensions, where we obtain characterizations when <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> is the union of two hyperplanes.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2286-2310"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70095","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The concept of the Heisenberg uniqueness pair ( Γ , Λ ) $(\Gamma, \Lambda)$ was introduced by Hedenmalm and Montes-Rodríguez as a variant of the uncertainty principle for the Fourier transform. The main results in Hedenmalm and Montes-Rodríguez (Ann. of Math. (2) 173 (2011), 1507–1527) concern the hyperbola Γ ε = { ( x 1 , x 2 ) R 2 , x 1 x 2 = ε } $\Gamma _{\epsilon }=\lbrace (x_1, x_2)\in \mathbb {R}^2,\, x_1x_2=\epsilon \rbrace$ ( 0 ε R $0\ne \epsilon \in \mathbb {R}$ ) and lattice-crosses Λ α β = ( α Z × { 0 } ) ( { 0 } × β Z ) $\Lambda _{\alpha \beta }=(\alpha \mathbb {Z}\times \lbrace 0\rbrace)\cup (\lbrace 0\rbrace \times \beta \mathbb {Z})$ ( α , β > 0 $\alpha, \beta >0$ ), where it is proved that ( Γ ε , Λ α β ) $(\Gamma _{\epsilon }, \Lambda _{\alpha \beta })$ is a Heisenberg uniqueness pair if and only if α β 1 / | ε | $\alpha \beta \leqslant 1/|\epsilon |$ . In this paper, we study the endpoint case ( ε = 0 $\epsilon =0$ in Γ ε $\Gamma _{\epsilon }$ ) and investigate the minimal information required on the zero set Λ $\Lambda$ to form such a pair. When Λ $\Lambda$ is contained in the union of two curves in the plane, we provide characterizations using dynamical system conditions. The situation differs in higher dimensions, where we obtain characterizations when Λ $\Lambda$ is the union of two hyperplanes.

Abstract Image

Abstract Image

Abstract Image

海森堡唯一性对和波动方程
Heisenberg唯一性对(Γ, Λ) $(\Gamma, \Lambda)$的概念是由Hedenmalm和Montes-Rodríguez作为傅里叶变换的不确定性原理的一种变体引入的。主要结果在Hedenmalm和Montes-Rodríguez (Ann。数学。(2) 173 (2011);1507-1527)与双曲线Γ ε = { (x 1, x 2)∈r2,x1 x2 = ε }$\Gamma _{\epsilon }=\lbrace (x_1, x_2)\in \mathbb {R}^2,\, x_1x_2=\epsilon \rbrace$(0≠ε∈R $0\ne \epsilon \in \mathbb {R}$)和格叉有关Λ α β = (α Z × { 0 })∪({ 0 } × β Z) $\Lambda _{\alpha \beta }=(\alpha \mathbb {Z}\times \lbrace 0\rbrace)\cup (\lbrace 0\rbrace \times \beta \mathbb {Z})$ (α, β &gt;0 $\alpha, \beta >0$),其中证明(Γ ε,Λ α β) $(\Gamma _{\epsilon }, \Lambda _{\alpha \beta })$是Heisenberg惟一对当且仅当α β≥1 / | ε | $\alpha \beta \leqslant 1/|\epsilon |$。在本文中,我们研究了端点情况(Γ ε $\Gamma _{\epsilon }$中ε = 0 $\epsilon =0$),并研究了零集Λ $\Lambda$上形成这样一个对所需的最小信息。当Λ $\Lambda$包含在平面上的两条曲线的并集中时,我们使用动力系统条件提供表征。在高维中情况有所不同,当Λ $\Lambda$是两个超平面的并集时,我们得到了特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信