{"title":"一个弯曲的Kakeya集合的构造","authors":"Tongou Yang, Yue Zhong","doi":"10.1112/blms.70110","DOIUrl":null,"url":null,"abstract":"<p>We construct a compact set in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n <annotation>$\\mathbb {R}^2$</annotation>\n </semantics></math> of measure 0 containing a piece of a parabola of every aperture between 1 and 2. As a consequence, we improve lower bounds for the <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <annotation>$L^p$</annotation>\n </semantics></math>-<span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>q</mi>\n </msup>\n <annotation>$L^q$</annotation>\n </semantics></math> norm of the corresponding maximal operator for a range of <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n <annotation>$p,q$</annotation>\n </semantics></math>. Moreover, our construction can be generalised from parabolas to a family of <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mn>2</mn>\n </msup>\n <annotation>$C^2$</annotation>\n </semantics></math> curves satisfying suitable curvature conditions.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2531-2548"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of a curved Kakeya set\",\"authors\":\"Tongou Yang, Yue Zhong\",\"doi\":\"10.1112/blms.70110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct a compact set in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$\\\\mathbb {R}^2$</annotation>\\n </semantics></math> of measure 0 containing a piece of a parabola of every aperture between 1 and 2. As a consequence, we improve lower bounds for the <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mi>p</mi>\\n </msup>\\n <annotation>$L^p$</annotation>\\n </semantics></math>-<span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mi>q</mi>\\n </msup>\\n <annotation>$L^q$</annotation>\\n </semantics></math> norm of the corresponding maximal operator for a range of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n </mrow>\\n <annotation>$p,q$</annotation>\\n </semantics></math>. Moreover, our construction can be generalised from parabolas to a family of <span></span><math>\\n <semantics>\\n <msup>\\n <mi>C</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$C^2$</annotation>\\n </semantics></math> curves satisfying suitable curvature conditions.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 8\",\"pages\":\"2531-2548\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70110\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70110","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们在r2 $\mathbb {R}^2$中构造一个测度0的紧集,其中包含1到2之间每个孔径的抛物线。因此,我们改进了p$ L^p$ - L q$ L^q$范数在p$,q$ p,q$范围内对应的极大算子的下界。此外,我们的构造可以由抛物线推广到满足适当曲率条件的c2 $C^2$曲线族。
We construct a compact set in of measure 0 containing a piece of a parabola of every aperture between 1 and 2. As a consequence, we improve lower bounds for the - norm of the corresponding maximal operator for a range of . Moreover, our construction can be generalised from parabolas to a family of curves satisfying suitable curvature conditions.