偏奇正交特征和插值舒尔多项式

IF 0.9 3区 数学 Q2 MATHEMATICS
Naihuan Jing, Zhijun Li, Xinyu Pan, Danxia Wang, Chang Ye
{"title":"偏奇正交特征和插值舒尔多项式","authors":"Naihuan Jing,&nbsp;Zhijun Li,&nbsp;Xinyu Pan,&nbsp;Danxia Wang,&nbsp;Chang Ye","doi":"10.1112/blms.70109","DOIUrl":null,"url":null,"abstract":"<p>We introduce two vertex operators to realize skew odd orthogonal characters <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <msub>\n <mi>o</mi>\n <mrow>\n <mi>λ</mi>\n <mo>/</mo>\n <mi>μ</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>x</mi>\n <mo>±</mo>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$so_{\\lambda /\\mu }(\\mathbf {x}^{\\pm })$</annotation>\n </semantics></math> and derive the Cauchy identity for the skew characters via the Toeplitz–Hankel-type determinant as an analog of Schur functions. The method also gives new proofs of the Jacobi–Trudi identity and Gelfand–Tsetlin patterns for <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <msub>\n <mi>o</mi>\n <mrow>\n <mi>λ</mi>\n <mo>/</mo>\n <mi>μ</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>x</mi>\n <mo>±</mo>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$so_{\\lambda /\\mu }(\\mathbf {x}^{\\pm })$</annotation>\n </semantics></math>. Moreover, combining the vertex operators related to characters of types <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mo>,</mo>\n <mi>D</mi>\n </mrow>\n <annotation>$C,D$</annotation>\n </semantics></math> (Baker, <i>J. Phys. A</i>. <b>29</b>(12) (1996), 3099–3117; Jing and Nie, <i>Ann. Combin</i>. <b>19</b> (2015), 427–442) and the new vertex operators related to <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math>-type characters, we obtain three families of symmetric polynomials that interpolate among characters of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>SO</mi>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathrm{SO}_{2n+1}(\\mathbb {C})$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>SO</mi>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathrm{SO}_{2n}(\\mathbb {C})$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Sp</mi>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathrm{Sp}_{2n}(\\mathbb {C})$</annotation>\n </semantics></math>. Their transition formulae are also explicitly given among symplectic, orthogonal, and odd orthogonal characters.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2509-2530"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skew odd orthogonal characters and interpolating Schur polynomials\",\"authors\":\"Naihuan Jing,&nbsp;Zhijun Li,&nbsp;Xinyu Pan,&nbsp;Danxia Wang,&nbsp;Chang Ye\",\"doi\":\"10.1112/blms.70109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce two vertex operators to realize skew odd orthogonal characters <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n <msub>\\n <mi>o</mi>\\n <mrow>\\n <mi>λ</mi>\\n <mo>/</mo>\\n <mi>μ</mi>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>x</mi>\\n <mo>±</mo>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$so_{\\\\lambda /\\\\mu }(\\\\mathbf {x}^{\\\\pm })$</annotation>\\n </semantics></math> and derive the Cauchy identity for the skew characters via the Toeplitz–Hankel-type determinant as an analog of Schur functions. The method also gives new proofs of the Jacobi–Trudi identity and Gelfand–Tsetlin patterns for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n <msub>\\n <mi>o</mi>\\n <mrow>\\n <mi>λ</mi>\\n <mo>/</mo>\\n <mi>μ</mi>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>x</mi>\\n <mo>±</mo>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$so_{\\\\lambda /\\\\mu }(\\\\mathbf {x}^{\\\\pm })$</annotation>\\n </semantics></math>. Moreover, combining the vertex operators related to characters of types <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <mo>,</mo>\\n <mi>D</mi>\\n </mrow>\\n <annotation>$C,D$</annotation>\\n </semantics></math> (Baker, <i>J. Phys. A</i>. <b>29</b>(12) (1996), 3099–3117; Jing and Nie, <i>Ann. Combin</i>. <b>19</b> (2015), 427–442) and the new vertex operators related to <span></span><math>\\n <semantics>\\n <mi>B</mi>\\n <annotation>$B$</annotation>\\n </semantics></math>-type characters, we obtain three families of symmetric polynomials that interpolate among characters of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>SO</mi>\\n <mrow>\\n <mn>2</mn>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>C</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathrm{SO}_{2n+1}(\\\\mathbb {C})$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>SO</mi>\\n <mrow>\\n <mn>2</mn>\\n <mi>n</mi>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>C</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathrm{SO}_{2n}(\\\\mathbb {C})$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Sp</mi>\\n <mrow>\\n <mn>2</mn>\\n <mi>n</mi>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>C</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathrm{Sp}_{2n}(\\\\mathbb {C})$</annotation>\\n </semantics></math>. Their transition formulae are also explicitly given among symplectic, orthogonal, and odd orthogonal characters.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 8\",\"pages\":\"2509-2530\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70109\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70109","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入两个顶点算子来实现斜奇正交字符s o λ / μ (x±)$so_{\lambda /\mu }(\mathbf {x}^{\pm })$并通过Toeplitz-Hankel-type行列式作为Schur函数的类比,推导出倾斜字符的柯西恒等式。该方法还给出了so λ / μ (x±)的Jacobi-Trudi恒等式和Gelfand-Tsetlin模式的新证明。$so_{\lambda /\mu }(\mathbf {x}^{\pm })$。此外,结合与C、D类特征相关的顶点算子$C,D$ (Baker, J. Phys。A. 29(12) (1996), 3099-3117;静和聂,安。结合。19(2015),427-442)和与B $B$类型字符相关的新顶点操作符,我们得到了三个对称多项式族,它们在so2n + 1 (C) $\mathrm{SO}_{2n+1}(\mathbb {C})$的字符之间插值,so2n (C) $\mathrm{SO}_{2n}(\mathbb {C})$,Sp 2n (C) $\mathrm{Sp}_{2n}(\mathbb {C})$。并给出了它们在辛正交、正交和奇正交之间的转换公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Skew odd orthogonal characters and interpolating Schur polynomials

Skew odd orthogonal characters and interpolating Schur polynomials

Skew odd orthogonal characters and interpolating Schur polynomials

Skew odd orthogonal characters and interpolating Schur polynomials

We introduce two vertex operators to realize skew odd orthogonal characters s o λ / μ ( x ± ) $so_{\lambda /\mu }(\mathbf {x}^{\pm })$ and derive the Cauchy identity for the skew characters via the Toeplitz–Hankel-type determinant as an analog of Schur functions. The method also gives new proofs of the Jacobi–Trudi identity and Gelfand–Tsetlin patterns for s o λ / μ ( x ± ) $so_{\lambda /\mu }(\mathbf {x}^{\pm })$ . Moreover, combining the vertex operators related to characters of types C , D $C,D$ (Baker, J. Phys. A. 29(12) (1996), 3099–3117; Jing and Nie, Ann. Combin. 19 (2015), 427–442) and the new vertex operators related to B $B$ -type characters, we obtain three families of symmetric polynomials that interpolate among characters of SO 2 n + 1 ( C ) $\mathrm{SO}_{2n+1}(\mathbb {C})$ , SO 2 n ( C ) $\mathrm{SO}_{2n}(\mathbb {C})$ , and Sp 2 n ( C ) $\mathrm{Sp}_{2n}(\mathbb {C})$ . Their transition formulae are also explicitly given among symplectic, orthogonal, and odd orthogonal characters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信