瑟斯顿障碍物和热带几何

IF 0.9 3区 数学 Q2 MATHEMATICS
Rohini Ramadas
{"title":"瑟斯顿障碍物和热带几何","authors":"Rohini Ramadas","doi":"10.1112/blms.70102","DOIUrl":null,"url":null,"abstract":"<p>We describe an application of tropical moduli spaces to complex dynamics. A post-critically finite branched covering <span></span><math>\n <semantics>\n <mi>φ</mi>\n <annotation>$\\varphi$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mn>2</mn>\n </msup>\n <annotation>$S^2$</annotation>\n </semantics></math> induces a pullback map on the Teichmüller space of complex structures of <span></span><math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mn>2</mn>\n </msup>\n <annotation>$S^2$</annotation>\n </semantics></math>; this descends to an algebraic correspondence on the moduli space of point-configurations of <span></span><math>\n <semantics>\n <msup>\n <mi>P</mi>\n <mn>1</mn>\n </msup>\n <annotation>$\\mathbb {P}^1$</annotation>\n </semantics></math>. We make a case for studying the action of the tropical moduli space correspondence by making explicit the connections between objects that have come up in one guise in tropical geometry and in another guise in complex dynamics. For example, a Thurston obstruction for <span></span><math>\n <semantics>\n <mi>φ</mi>\n <annotation>$\\varphi$</annotation>\n </semantics></math> corresponds to a ray that is fixed by the tropical moduli space correspondence, and scaled by a factor <span></span><math>\n <semantics>\n <mrow>\n <mo>⩾</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\geqslant 1$</annotation>\n </semantics></math>. This article is intended to be accessible to algebraic and tropical geometers as well as to complex dynamicists.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2404-2428"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70102","citationCount":"0","resultStr":"{\"title\":\"Thurston obstructions and tropical geometry\",\"authors\":\"Rohini Ramadas\",\"doi\":\"10.1112/blms.70102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We describe an application of tropical moduli spaces to complex dynamics. A post-critically finite branched covering <span></span><math>\\n <semantics>\\n <mi>φ</mi>\\n <annotation>$\\\\varphi$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <msup>\\n <mi>S</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$S^2$</annotation>\\n </semantics></math> induces a pullback map on the Teichmüller space of complex structures of <span></span><math>\\n <semantics>\\n <msup>\\n <mi>S</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$S^2$</annotation>\\n </semantics></math>; this descends to an algebraic correspondence on the moduli space of point-configurations of <span></span><math>\\n <semantics>\\n <msup>\\n <mi>P</mi>\\n <mn>1</mn>\\n </msup>\\n <annotation>$\\\\mathbb {P}^1$</annotation>\\n </semantics></math>. We make a case for studying the action of the tropical moduli space correspondence by making explicit the connections between objects that have come up in one guise in tropical geometry and in another guise in complex dynamics. For example, a Thurston obstruction for <span></span><math>\\n <semantics>\\n <mi>φ</mi>\\n <annotation>$\\\\varphi$</annotation>\\n </semantics></math> corresponds to a ray that is fixed by the tropical moduli space correspondence, and scaled by a factor <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>⩾</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$\\\\geqslant 1$</annotation>\\n </semantics></math>. This article is intended to be accessible to algebraic and tropical geometers as well as to complex dynamicists.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 8\",\"pages\":\"2404-2428\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70102\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70102\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70102","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了热带模空间在复杂动力学中的应用。s2的一个后临界有限分支覆盖φ $\varphi$$S^2$在s2的复杂结构的teichm空间上引起了一个回拉映射$S^2$;这可以归结为p1点构型模空间上的代数对应$\mathbb {P}^1$。我们通过明确在热带几何中以一种形式出现的物体与在复杂动力学中以另一种形式出现的物体之间的联系,来研究热带模空间对应的作用。例如,φ $\varphi$的Thurston障碍物对应于由热带模空间对应固定的射线,并通过因子大于或等于1 $\geqslant 1$进行缩放。这篇文章的目的是方便代数和热带几何以及复杂的动力学家。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thurston obstructions and tropical geometry

Thurston obstructions and tropical geometry

Thurston obstructions and tropical geometry

Thurston obstructions and tropical geometry

Thurston obstructions and tropical geometry

We describe an application of tropical moduli spaces to complex dynamics. A post-critically finite branched covering φ $\varphi$ of S 2 $S^2$ induces a pullback map on the Teichmüller space of complex structures of S 2 $S^2$ ; this descends to an algebraic correspondence on the moduli space of point-configurations of P 1 $\mathbb {P}^1$ . We make a case for studying the action of the tropical moduli space correspondence by making explicit the connections between objects that have come up in one guise in tropical geometry and in another guise in complex dynamics. For example, a Thurston obstruction for φ $\varphi$ corresponds to a ray that is fixed by the tropical moduli space correspondence, and scaled by a factor 1 $\geqslant 1$ . This article is intended to be accessible to algebraic and tropical geometers as well as to complex dynamicists.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信