On profinite groups with the Magnus Property

IF 0.9 3区 数学 Q2 MATHEMATICS
Claude Marion, Pavel Zalesskii
{"title":"On profinite groups with the Magnus Property","authors":"Claude Marion,&nbsp;Pavel Zalesskii","doi":"10.1112/blms.70107","DOIUrl":null,"url":null,"abstract":"<p>A group is said to have the Magnus Property (MP) if whenever two elements have the same normal closure then they are conjugate or inverse-conjugate. We show that a profinite MP group <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> is prosolvable and any quotient of it is again MP. As corollaries, we obtain that a prime divisor of <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>G</mi>\n <mo>|</mo>\n </mrow>\n <annotation>$|G|$</annotation>\n </semantics></math> is 2, 3, 5 or 7, and the second derived subgroup of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> is pronilpotent. We also show that the inverse limit of an inverse system of profinite MP groups is again MP. Finally when <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> is finitely generated, we establish that <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> must in fact be finite.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2489-2497"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70107","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A group is said to have the Magnus Property (MP) if whenever two elements have the same normal closure then they are conjugate or inverse-conjugate. We show that a profinite MP group G $G$ is prosolvable and any quotient of it is again MP. As corollaries, we obtain that a prime divisor of | G | $|G|$ is 2, 3, 5 or 7, and the second derived subgroup of G $G$ is pronilpotent. We also show that the inverse limit of an inverse system of profinite MP groups is again MP. Finally when G $G$ is finitely generated, we establish that G $G$ must in fact be finite.

Abstract Image

Abstract Image

Abstract Image

在无限群上用Magnus属性
如果两个元素具有相同的法向闭包,则它们是共轭的或反共轭的,则一个群具有马格努斯性质(MP)。证明了无限MP群G$ G$是可解的,并且它的任何商都是MP。作为推论,我们得到了|G|$ |G|$的一个素数是2、3、5或7,并且得到了G$ G$的第二个导出子群是幂幂的。我们还证明了无限MP群的逆系统的逆极限也是MP。最后,当G$ G$是有限生成时,我们建立了G$ G$实际上必须是有限的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信