Advances in Nonlinear Analysis最新文献

筛选
英文 中文
k-convex solutions for multiparameter Dirichlet systems with k-Hessian operator and Lane-Emden type nonlinearities 具有 k-Hessian 算子和 Lane-Emden 型非线性的多参数 Dirichlet 系统的 k-convex 解法
IF 4.2 1区 数学
Advances in Nonlinear Analysis Pub Date : 2024-01-01 DOI: 10.1515/anona-2023-0136
Xingyue He, Chenghua Gao, Jingjing Wang
{"title":"k-convex solutions for multiparameter Dirichlet systems with k-Hessian operator and Lane-Emden type nonlinearities","authors":"Xingyue He, Chenghua Gao, Jingjing Wang","doi":"10.1515/anona-2023-0136","DOIUrl":"https://doi.org/10.1515/anona-2023-0136","url":null,"abstract":"\u0000 <jats:p>In this article, our main aim is to investigate the existence of radial <jats:inline-formula>\u0000 <jats:alternatives>\u0000 <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0136_eq_001.png\" />\u0000 <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\u0000 <m:mi>k</m:mi>\u0000 </m:math>\u0000 <jats:tex-math>k</jats:tex-math>\u0000 </jats:alternatives>\u0000 </jats:inline-formula>-convex solutions for the following Dirichlet system with <jats:inline-formula>\u0000 <jats:alternatives>\u0000 <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0136_eq_002.png\" />\u0000 <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\u0000 <m:mi>k</m:mi>\u0000 </m:math>\u0000 <jats:tex-math>k</jats:tex-math>\u0000 </jats:alternatives>\u0000 </jats:inline-formula>-Hessian operators: <jats:disp-formula id=\"j_anona-2023-0136_eq_001\">\u0000 <jats:alternatives>\u0000 <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0136_eq_003.png\" />\u0000 <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\">\u0000 <m:mfenced open=\"{\" close=\"\">\u0000 <m:mrow>\u0000 <m:mtable displaystyle=\"true\">\u0000 <m:mtr>\u0000 <m:mtd columnalign=\"left\">\u0000 <m:msub>\u0000 <m:mrow>\u0000 <m:mi>S</m:mi>\u0000 </m:mrow>\u0000 <m:mrow>\u0000 <m:mi>k</m:mi>\u0000 </m:mrow>\u0000 </m:msub>\u0000 <m:mrow>\u0000 <m:mo>(</m:mo>\u0000 <m:mrow>\u0000 <m:msup>\u0000 <m:mrow>\u0000 <m:mi>D</m:mi>\u0000 </m:mrow>\u0000 <m:mrow>\u0000 <m:mn>2</m:mn>\u0000 </m:mrow>\u0000 </m:msup>\u0000 <m:mi>u</m:mi>\u0000 </m:mrow>\u0000 ","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140519518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a nonlinear Robin problem with an absorption term on the boundary and L 1 data 关于边界上有吸收项和 L 1 数据的非线性罗宾问题
IF 4.2 1区 数学
Advances in Nonlinear Analysis Pub Date : 2024-01-01 DOI: 10.1515/anona-2023-0118
Francesco Della Pietra, Francescantonio Oliva, Sergio Segura de León
{"title":"On a nonlinear Robin problem with an absorption term on the boundary and L\u0000 1 data","authors":"Francesco Della Pietra, Francescantonio Oliva, Sergio Segura de León","doi":"10.1515/anona-2023-0118","DOIUrl":"https://doi.org/10.1515/anona-2023-0118","url":null,"abstract":"\u0000 <jats:p>We deal with existence and uniqueness of nonnegative solutions to: <jats:disp-formula id=\"j_anona-2023-0118_eq_001\">\u0000 <jats:alternatives>\u0000 <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0118_eq_001.png\" />\u0000 <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\">\u0000 <m:mfenced open=\"{\" close=\"\">\u0000 <m:mrow>\u0000 <m:mtable displaystyle=\"true\">\u0000 <m:mtr>\u0000 <m:mtd columnalign=\"left\">\u0000 <m:mo>−</m:mo>\u0000 <m:mi mathvariant=\"normal\">Δ</m:mi>\u0000 <m:mi>u</m:mi>\u0000 <m:mo>=</m:mo>\u0000 <m:mi>f</m:mi>\u0000 <m:mrow>\u0000 <m:mo>(</m:mo>\u0000 <m:mrow>\u0000 <m:mi>x</m:mi>\u0000 </m:mrow>\u0000 <m:mo>)</m:mo>\u0000 </m:mrow>\u0000 <m:mo>,</m:mo>\u0000 <m:mspace width=\"1.0em\" />\u0000 </m:mtd>\u0000 <m:mtd columnalign=\"left\">\u0000 <m:mstyle>\u0000 <m:mspace width=\"0.1em\" />\u0000 <m:mtext>in</m:mtext>\u0000 <m:mspace width=\"0.1em\" />\u0000 </m:mstyle>\u0000 <m:mspace width=\"0.33em\" />\u0000 <m:mi mathvariant=\"normal\">Ω</m:mi>\u0000 <m:mo>,</m:mo>\u0000 </m:mtd>\u0000 </m:mtr>\u0000 <m:mtr>\u0000 <m:mtd columnalign=\"left\">\u0000 <m:mfrac>\u0000 <m:mrow>\u0000 <m:mo>∂</m:mo>\u0000 <m:mi>u</m:mi>\u0000 </m:mrow>\u0000 <m:mrow>\u0000 <m:mo>∂</m:mo>\u0000 <m:mi>ν</m:mi>\u0000 </m:mrow>\u0000 </m:mfrac>\u0000 <m:mo>+</m:mo>\u0000 ","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140516567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence and uniqueness of solution for a singular elliptic differential equation 奇异椭圆微分方程解的存在性和唯一性
IF 4.2 1区 数学
Advances in Nonlinear Analysis Pub Date : 2024-01-01 DOI: 10.1515/anona-2023-0126
Shanshan Gu, Bianxia Yang, Wenrui Shao
{"title":"Existence and uniqueness of solution for a singular elliptic differential equation","authors":"Shanshan Gu, Bianxia Yang, Wenrui Shao","doi":"10.1515/anona-2023-0126","DOIUrl":"https://doi.org/10.1515/anona-2023-0126","url":null,"abstract":"\u0000 <jats:p>In this article, we are concerned about the existence, uniqueness, and nonexistence of the positive solution for: <jats:disp-formula id=\"j_anona-2023-0126_eq_001\">\u0000 <jats:alternatives>\u0000 <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0126_eq_001.png\" />\u0000 <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\">\u0000 <m:mfenced open=\"{\" close=\"\">\u0000 <m:mrow>\u0000 <m:mtable displaystyle=\"true\">\u0000 <m:mtr>\u0000 <m:mtd columnalign=\"left\">\u0000 <m:mo>−</m:mo>\u0000 <m:mi mathvariant=\"normal\">Δ</m:mi>\u0000 <m:mi>u</m:mi>\u0000 <m:mo>−</m:mo>\u0000 <m:mfrac>\u0000 <m:mrow>\u0000 <m:mn>1</m:mn>\u0000 </m:mrow>\u0000 <m:mrow>\u0000 <m:mn>2</m:mn>\u0000 </m:mrow>\u0000 </m:mfrac>\u0000 <m:mrow>\u0000 <m:mo>(</m:mo>\u0000 <m:mrow>\u0000 <m:mi>x</m:mi>\u0000 <m:mo>⋅</m:mo>\u0000 <m:mrow>\u0000 <m:mo>∇</m:mo>\u0000 </m:mrow>\u0000 <m:mi>u</m:mi>\u0000 </m:mrow>\u0000 <m:mo>)</m:mo>\u0000 </m:mrow>\u0000 <m:mo>=</m:mo>\u0000 <m:mi>μ</m:mi>\u0000 <m:mi>h</m:mi>\u0000 <m:mrow>\u0000 <m:mo>(</m:mo>\u0000 <m:mrow>\u0000 <m:mi>x</m:mi>\u0000 </m:mrow>\u0000 <m:mo>)</m:mo>\u0000 </m:mrow>\u0000 <m:msup>\u0000 <m:mrow>\u0000 <m:mi>u</m:mi>\u0000 </m:mrow>\u0000 <m:mrow>\u0000 ","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140524673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global existence and decay estimates of the classical solution to the compressible Navier-Stokes-Smoluchowski equations in ℝ3 ℝ3中可压缩纳维-斯托克斯-斯莫卢霍夫斯基方程经典解的全局存在性和衰减估计
IF 4.2 1区 数学
Advances in Nonlinear Analysis Pub Date : 2024-01-01 DOI: 10.1515/anona-2023-0131
Leilei Tong
{"title":"Global existence and decay estimates of the classical solution to the compressible Navier-Stokes-Smoluchowski equations in ℝ3","authors":"Leilei Tong","doi":"10.1515/anona-2023-0131","DOIUrl":"https://doi.org/10.1515/anona-2023-0131","url":null,"abstract":"\u0000 <jats:p>The compressible Navier-Stokes-Smoluchowski equations under investigation concern the behavior of the mixture of fluid and particles at a macroscopic scale. We devote to the existence of the global classical solution near the stationary solution based on the energy method under weaker conditions imposed on the external potential compared with Chen et al. (Global existence and time–decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations, Discrete Contin. Dyn. Syst. 36 (2016), no. 10, 5287–5307). Under further assumptions that the stationary solution <jats:inline-formula>\u0000 <jats:alternatives>\u0000 <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0131_eq_001.png\" />\u0000 <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\u0000 <m:msup>\u0000 <m:mrow>\u0000 <m:mrow>\u0000 <m:mo>(</m:mo>\u0000 <m:mrow>\u0000 <m:msub>\u0000 <m:mrow>\u0000 <m:mi>ρ</m:mi>\u0000 </m:mrow>\u0000 <m:mrow>\u0000 <m:mi>s</m:mi>\u0000 </m:mrow>\u0000 </m:msub>\u0000 <m:mrow>\u0000 <m:mo>(</m:mo>\u0000 <m:mrow>\u0000 <m:mi>x</m:mi>\u0000 </m:mrow>\u0000 <m:mo>)</m:mo>\u0000 </m:mrow>\u0000 <m:mo>,</m:mo>\u0000 <m:mn>0</m:mn>\u0000 <m:mo>,</m:mo>\u0000 <m:mn>0</m:mn>\u0000 </m:mrow>\u0000 <m:mo>)</m:mo>\u0000 </m:mrow>\u0000 </m:mrow>\u0000 <m:mrow>\u0000 <m:mi>T</m:mi>\u0000 </m:mrow>\u0000 </m:msup>\u0000 </m:math>\u0000 <jats:tex-math>{left({rho }_{s}left(x),0,0)}^{T}</jats:tex-math>\u0000 </jats:alternatives>\u0000 </jats:inline-formula> is in a small neighborhood of the constant state <jats:inline-formula>\u0000 <jats:alternatives>\u0000 <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0131_eq_002.png\" />\u0000 <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\u0000 ","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140519507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence of normalized peak solutions for a coupled nonlinear Schrödinger system 耦合非线性薛定谔系统的归一化峰值解的存在性
IF 4.2 1区 数学
Advances in Nonlinear Analysis Pub Date : 2024-01-01 DOI: 10.1515/anona-2023-0113
Jing Yang
{"title":"Existence of normalized peak solutions for a coupled nonlinear Schrödinger system","authors":"Jing Yang","doi":"10.1515/anona-2023-0113","DOIUrl":"https://doi.org/10.1515/anona-2023-0113","url":null,"abstract":"\u0000 <jats:p>In this article, we study the following nonlinear Schrödinger system <jats:disp-formula id=\"j_anona-2023-0113_eq_001\">\u0000 <jats:alternatives>\u0000 <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0113_eq_001.png\" />\u0000 <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\">\u0000 <m:mfenced open=\"{\" close=\"\">\u0000 <m:mrow>\u0000 <m:mtable displaystyle=\"true\">\u0000 <m:mtr>\u0000 <m:mtd columnalign=\"left\">\u0000 <m:mo>−</m:mo>\u0000 <m:mi mathvariant=\"normal\">Δ</m:mi>\u0000 <m:msub>\u0000 <m:mrow>\u0000 <m:mi>u</m:mi>\u0000 </m:mrow>\u0000 <m:mrow>\u0000 <m:mn>1</m:mn>\u0000 </m:mrow>\u0000 </m:msub>\u0000 <m:mo>+</m:mo>\u0000 <m:msub>\u0000 <m:mrow>\u0000 <m:mi>V</m:mi>\u0000 </m:mrow>\u0000 <m:mrow>\u0000 <m:mn>1</m:mn>\u0000 </m:mrow>\u0000 </m:msub>\u0000 <m:mrow>\u0000 <m:mo>(</m:mo>\u0000 <m:mrow>\u0000 <m:mi>x</m:mi>\u0000 </m:mrow>\u0000 <m:mo>)</m:mo>\u0000 </m:mrow>\u0000 <m:msub>\u0000 <m:mrow>\u0000 <m:mi>u</m:mi>\u0000 </m:mrow>\u0000 <m:mrow>\u0000 <m:mn>1</m:mn>\u0000 </m:mrow>\u0000 </m:msub>\u0000 <m:mo>=</m:mo>\u0000 <m:mi>α</m:mi>\u0000 <m:msub>\u0000 <m:mrow>\u0000 <m:mi>u</m:mi>\u0000 </m:mrow>\u0000 <m:mrow>","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140518379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The bounded variation capacity and Sobolev-type inequalities on Dirichlet spaces 迪里希勒空间上的有界变化能力和索波列夫型不等式
IF 4.2 1区 数学
Advances in Nonlinear Analysis Pub Date : 2024-01-01 DOI: 10.1515/anona-2023-0119
Xiangyun Xie, Yu Liu, Pengtao Li, Jizheng Huang
{"title":"The bounded variation capacity and Sobolev-type inequalities on Dirichlet spaces","authors":"Xiangyun Xie, Yu Liu, Pengtao Li, Jizheng Huang","doi":"10.1515/anona-2023-0119","DOIUrl":"https://doi.org/10.1515/anona-2023-0119","url":null,"abstract":"\u0000 In this article, we consider the bounded variation capacity (BV capacity) and characterize the Sobolev-type inequalities related to BV functions in a general framework of strictly local Dirichlet spaces with a doubling measure via the BV capacity. Under a weak Bakry-Émery curvature-type condition, we give the connection between the Hausdorff measure and the Hausdorff capacity, and discover some capacitary inequalities and Maz’ya-Sobolev inequalities for BV functions. The De Giorgi characterization for total variation is also obtained with a quasi-Bakry-Émery curvature condition. It should be noted that the results in this article are proved if the Dirichlet space supports the weak \u0000 \u0000 \u0000 \u0000 \u0000 (\u0000 \u0000 1\u0000 ,\u0000 2\u0000 \u0000 )\u0000 \u0000 \u0000 left(1,2)\u0000 \u0000 -Poincaré inequality instead of the weak \u0000 \u0000 \u0000 \u0000 \u0000 (\u0000 \u0000 1\u0000 ,\u0000 1\u0000 \u0000 )\u0000 \u0000 \u0000 left(1,1)\u0000 \u0000 -Poincaré inequality compared with the results in the previous references.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140526306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Multiplicity of semiclassical solutions for a class of nonlinear Hamiltonian elliptic system 一类非线性哈密顿椭圆系统半经典解的多重性
IF 4.2 1区 数学
Advances in Nonlinear Analysis Pub Date : 2024-01-01 DOI: 10.1515/anona-2023-0139
Jian Zhang, Huitao Zhou, Heilong Mi
{"title":"Multiplicity of semiclassical solutions for a class of nonlinear Hamiltonian elliptic system","authors":"Jian Zhang, Huitao Zhou, Heilong Mi","doi":"10.1515/anona-2023-0139","DOIUrl":"https://doi.org/10.1515/anona-2023-0139","url":null,"abstract":"\u0000 <jats:p>This article is concerned with the following Hamiltonian elliptic system: <jats:disp-formula id=\"j_anona-2023-0139_eq_001\">\u0000 <jats:alternatives>\u0000 <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0139_eq_001.png\" />\u0000 <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\">\u0000 <m:mfenced open=\"{\" close=\"\">\u0000 <m:mrow>\u0000 <m:mtable displaystyle=\"true\">\u0000 <m:mtr>\u0000 <m:mtd columnalign=\"left\">\u0000 <m:mo>−</m:mo>\u0000 <m:msup>\u0000 <m:mrow>\u0000 <m:mi>ε</m:mi>\u0000 </m:mrow>\u0000 <m:mrow>\u0000 <m:mn>2</m:mn>\u0000 </m:mrow>\u0000 </m:msup>\u0000 <m:mi mathvariant=\"normal\">Δ</m:mi>\u0000 <m:mi>u</m:mi>\u0000 <m:mo>+</m:mo>\u0000 <m:mi>ε</m:mi>\u0000 <m:mover accent=\"true\">\u0000 <m:mrow>\u0000 <m:mi>b</m:mi>\u0000 </m:mrow>\u0000 <m:mrow>\u0000 <m:mo>→</m:mo>\u0000 </m:mrow>\u0000 </m:mover>\u0000 <m:mo>⋅</m:mo>\u0000 <m:mrow>\u0000 <m:mo>∇</m:mo>\u0000 </m:mrow>\u0000 <m:mi>u</m:mi>\u0000 <m:mo>+</m:mo>\u0000 <m:mi>u</m:mi>\u0000 <m:mo>+</m:mo>\u0000 <m:mi>V</m:mi>\u0000 <m:mrow>\u0000 <m:mo>(</m:mo>\u0000 <m:mrow>\u0000 <m:mi>x</m:mi>\u0000 </m:mrow>\u0000 <m:mo>)</m:mo>\u0000 </m:mrow>\u0000 <m:mi>v</m:mi>\u0000 <m:mo>=</m:mo>\u0000 <m:msub>\u0000 ","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140527107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Multiple solutions for the quasilinear Choquard equation with Berestycki-Lions-type nonlinearities 具有贝里斯基-狮子型非线性的准线性乔夸德方程的多重解
IF 4.2 1区 数学
Advances in Nonlinear Analysis Pub Date : 2024-01-01 DOI: 10.1515/anona-2023-0130
Yue Jia, Xianyong Yang
{"title":"Multiple solutions for the quasilinear Choquard equation with Berestycki-Lions-type nonlinearities","authors":"Yue Jia, Xianyong Yang","doi":"10.1515/anona-2023-0130","DOIUrl":"https://doi.org/10.1515/anona-2023-0130","url":null,"abstract":"\u0000 <jats:p>In this article, we study the following quasilinear equation with nonlocal nonlinearity <jats:disp-formula id=\"j_anona-2023-0130_eq_001\">\u0000 <jats:alternatives>\u0000 <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0130_eq_001.png\" />\u0000 <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\">\u0000 <m:mo>−</m:mo>\u0000 <m:mi mathvariant=\"normal\">Δ</m:mi>\u0000 <m:mi>u</m:mi>\u0000 <m:mo>−</m:mo>\u0000 <m:mi>κ</m:mi>\u0000 <m:mi>u</m:mi>\u0000 <m:mi>Δ</m:mi>\u0000 <m:mrow>\u0000 <m:mo>(</m:mo>\u0000 <m:mrow>\u0000 <m:msup>\u0000 <m:mrow>\u0000 <m:mi>u</m:mi>\u0000 </m:mrow>\u0000 <m:mrow>\u0000 <m:mn>2</m:mn>\u0000 </m:mrow>\u0000 </m:msup>\u0000 </m:mrow>\u0000 <m:mo>)</m:mo>\u0000 </m:mrow>\u0000 <m:mo>+</m:mo>\u0000 <m:mi>λ</m:mi>\u0000 <m:mi>u</m:mi>\u0000 <m:mo>=</m:mo>\u0000 <m:mrow>\u0000 <m:mo>(</m:mo>\u0000 <m:mrow>\u0000 <m:msup>\u0000 <m:mrow>\u0000 <m:mo>∣</m:mo>\u0000 <m:mi>x</m:mi>\u0000 <m:mo>∣</m:mo>\u0000 </m:mrow>\u0000 <m:mrow>\u0000 <m:mo>−</m:mo>\u0000 <m:mi>μ</m:mi>\u0000 </m:mrow>\u0000 </m:msup>\u0000 <m:mo>*</m:mo>\u0000 <m:mi>F</m:mi>\u0000 <m:mrow>\u0000 <m:mo>(</m:mo>\u0000 <m:mrow>\u0000 <m:mi>u</m:mi>\u0000 </m:mrow>\u0000 <m:mo>)</m:mo>\u0000 </m:mrow>\u0000 </m:mrow>\u0000 <m:mo>)</m:mo>\u0000 </m:mrow>\u0000 <m:mi>f</m:mi>\u0000 <m:mrow>\u0000 <m:mo>(</m:mo>\u0000 <m:mrow>\u0000 <m:mi>u</m:mi>\u0000 </m:mrow>\u0000 ","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140522614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Higher integrability for anisotropic parabolic systems of p-Laplace type p-Laplace型各向异性抛物型系统的高可积性
IF 4.2 1区 数学
Advances in Nonlinear Analysis Pub Date : 2023-01-01 DOI: 10.1515/anona-2022-0308
Leon Mons
{"title":"Higher integrability for anisotropic parabolic systems of p-Laplace type","authors":"Leon Mons","doi":"10.1515/anona-2022-0308","DOIUrl":"https://doi.org/10.1515/anona-2022-0308","url":null,"abstract":"Abstract In this article, we consider anisotropic parabolic systems of p p -Laplace type. The model case is the parabolic p i {p}_{i} -Laplace system u t − ∑ i = 1 n ∂ ∂ x i ( ∣ D i u ∣ p i − 2 D i u ) = 0 {u}_{t}-mathop{sum }limits_{i=1}^{n}frac{partial }{partial {x}_{i}}({| {D}_{i}u| }^{{p}_{i}-2}{D}_{i}u)=0 with exponents p i ≥ 2 {p}_{i}ge 2 . Under the assumption that the exponents are not too far apart, i.e., the difference p max − p min {p}_{max }-{p}_{min } is sufficiently small, we establish a higher integrability result for weak solutions. This extends a result, which was only known for the elliptic setting, to the parabolic setting.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45131011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Dirichlet problems involving the Hardy-Leray operators with multiple polars 多极点Hardy-Leray算子的Dirichlet问题
IF 4.2 1区 数学
Advances in Nonlinear Analysis Pub Date : 2023-01-01 DOI: 10.1515/anona-2022-0320
Huyuan Chen, Xiaowei Chen
{"title":"Dirichlet problems involving the Hardy-Leray operators with multiple polars","authors":"Huyuan Chen, Xiaowei Chen","doi":"10.1515/anona-2022-0320","DOIUrl":"https://doi.org/10.1515/anona-2022-0320","url":null,"abstract":"Abstract Our aim of this article is to study qualitative properties of Dirichlet problems involving the Hardy-Leray operator ℒ V ≔ − Δ + V {{mathcal{ {mathcal L} }}}_{V}:= -Delta +V , where V ( x ) = ∑ i = 1 m μ i ∣ x − A i ∣ 2 Vleft(x)={sum }_{i=1}^{m}frac{{mu }_{i}}{{| x-{A}_{i}| }^{2}} , with μ i ≥ − ( N − 2 ) 2 4 {mu }_{i}ge -frac{{left(N-2)}^{2}}{4} being the Hardy-Leray potential containing the polars’ set A m = { A i : i = 1 , … , m } {{mathcal{A}}}_{m}=left{{A}_{i}:i=1,ldots ,mright} in R N {{mathbb{R}}}^{N} ( N ≥ 2 Nge 2 ). Since the inverse-square potentials are critical with respect to the Laplacian operator, the coefficients { μ i } i = 1 m {left{{mu }_{i}right}}_{i=1}^{m} and the locations of polars { A i } left{{A}_{i}right} play an important role in the properties of solutions to the related Poisson problems subject to zero Dirichlet boundary conditions. Let Ω Omega be a bounded domain containing A m {{mathcal{A}}}_{m} . First, we obtain increasing Dirichlet eigenvalues: ℒ V u = λ u in Ω , u = 0 on ∂ Ω , {{mathcal{ {mathcal L} }}}_{V}u=lambda uhspace{1.0em}{rm{in}}hspace{0.33em}Omega ,hspace{1.0em}u=0hspace{1.0em}{rm{on}}hspace{0.33em}partial Omega , and the positivity of the principle eigenvalue depends on the strength μ i {mu }_{i} and polars’ setting. When the spectral does not contain the origin, we then consider the weak solutions of the Poisson problem ( E ) ℒ V u = ν in Ω , u = 0 on ∂ Ω , left(E)hspace{1.0em}hspace{1.0em}{{mathcal{ {mathcal L} }}}_{V}u=nu hspace{1em}{rm{in}}hspace{0.33em}Omega ,hspace{1.0em}u=0hspace{1em}{rm{on}}hspace{0.33em}partial Omega , when ν nu belongs to L p ( Ω ) {L}^{p}left(Omega ) , with p > 2 N N + 2 pgt frac{2N}{N+2} in the variational framework, and we obtain a global weighted L ∞ {L}^{infty } estimate when p > N 2 pgt frac{N}{2} . When the principle eigenvalue is positive and ν nu is a Radon measure, we build a weighted distributional framework to show the existence of weak solutions of problem ( E ) left(E) . Moreover, via this weighted distributional framework, we can obtain a sharp assumption of ν ∈ C γ ( Ω ¯ A m ) nu in {{mathcal{C}}}^{gamma }left(bar{Omega }setminus {{mathcal{A}}}_{m}) for the existence of isolated singular solutions for problem ( E ) left(E) .","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43333591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信