Infinitely many localized semiclassical states for nonlinear Kirchhoff-type equation

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Binhua Feng, Da-Bin Wang, Zhi-Guo Wu
{"title":"Infinitely many localized semiclassical states for nonlinear Kirchhoff-type equation","authors":"Binhua Feng, Da-Bin Wang, Zhi-Guo Wu","doi":"10.1515/anona-2022-0296","DOIUrl":null,"url":null,"abstract":"Abstract We deal with localized semiclassical states for singularly perturbed Kirchhoff-type equation as follows: − ε 2 a + ε b ∫ R 3 ∣ ∇ v ∣ 2 d x Δ v + V ( x ) v = P ( x ) f ( v ) , x ∈ R 3 , -\\left({\\varepsilon }^{2}a+\\varepsilon b\\mathop{\\int }\\limits_{{{\\mathbb{R}}}^{3}}| \\nabla v{| }^{2}{\\rm{d}}x\\right)\\Delta v+V\\left(x)v=P\\left(x)f\\left(v),\\hspace{1em}x\\in {{\\mathbb{R}}}^{3}, where V , P ∈ C 1 ( R 3 , R ) V,P\\in {C}^{1}\\left({{\\mathbb{R}}}^{3},{\\mathbb{R}}) and bounded away from zero. By applying the penalization approach together with the Nehari manifold approach in the studies of Szulkin and Weth, we obtain the existence of an infinite sequence of localized solutions of higher topological type. In addition, we also give a concrete set as the concentration position of these localized solutions. It is noted that, in our main results, f f only belongs to C ( R , R ) C\\left({\\mathbb{R}},{\\mathbb{R}}) and does not satisfy the Ambrosetti-Rabinowitz-type condition.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0296","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract We deal with localized semiclassical states for singularly perturbed Kirchhoff-type equation as follows: − ε 2 a + ε b ∫ R 3 ∣ ∇ v ∣ 2 d x Δ v + V ( x ) v = P ( x ) f ( v ) , x ∈ R 3 , -\left({\varepsilon }^{2}a+\varepsilon b\mathop{\int }\limits_{{{\mathbb{R}}}^{3}}| \nabla v{| }^{2}{\rm{d}}x\right)\Delta v+V\left(x)v=P\left(x)f\left(v),\hspace{1em}x\in {{\mathbb{R}}}^{3}, where V , P ∈ C 1 ( R 3 , R ) V,P\in {C}^{1}\left({{\mathbb{R}}}^{3},{\mathbb{R}}) and bounded away from zero. By applying the penalization approach together with the Nehari manifold approach in the studies of Szulkin and Weth, we obtain the existence of an infinite sequence of localized solutions of higher topological type. In addition, we also give a concrete set as the concentration position of these localized solutions. It is noted that, in our main results, f f only belongs to C ( R , R ) C\left({\mathbb{R}},{\mathbb{R}}) and does not satisfy the Ambrosetti-Rabinowitz-type condition.
非线性kirchhoff型方程的无穷多局域半经典态
我们处理奇摄动kirchhoff型方程的局域半经典态:−ε 2a + ε b∫R 3∣∇v∣2d x Δ v + v (x) v = P (x) f (v), x∈R 3, -\left({\varepsilon }^{2}a+\varepsilon b\mathop{\int }\limits_{{{\mathbb{R}}}^{3.}}| \nabla v{| }^{2}{\rm{d}}x\right)\Delta v+ v\left(x)v=P\left(x)f\left(v);\hspace{1em}x\in {{\mathbb{R}}}^{3.},其中V,P∈c1 (r3, R) V,P\in {c}^{1}\left({{\mathbb{R}}}^{3.},{\mathbb{R}}),从零开始跳跃。将惩罚方法与Nehari流形方法一起应用于Szulkin和Weth的研究中,得到了一类高拓扑型局部解的无穷序列的存在性。此外,我们还给出了一个具体集合作为这些局部解的集中位置。值得注意的是,在我们的主要结果中,f只属于C (R, R) C\left({\mathbb{R}},{\mathbb{R}}),不满足ambrosetti - rabinowitz型条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信