{"title":"通过连续周期切换模型模拟蚊子种群沃尔巴克氏体感染频率","authors":"Yantao Shi, Bo Zheng","doi":"10.1515/anona-2022-0297","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we develop a continuous periodic switching model depicting Wolbachia infection frequency dynamics in mosquito populations by releasing Wolbachia-infected mosquitoes, which is different from the discrete modeling efforts in the literature. We obtain sufficient conditions on the existence of a unique and exactly two periodic solutions and analyze the stability of each periodic solution, respectively. We also provide a brief discussion and several numerical examples to illustrate our theoretical results.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modeling Wolbachia infection frequency in mosquito populations via a continuous periodic switching model\",\"authors\":\"Yantao Shi, Bo Zheng\",\"doi\":\"10.1515/anona-2022-0297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we develop a continuous periodic switching model depicting Wolbachia infection frequency dynamics in mosquito populations by releasing Wolbachia-infected mosquitoes, which is different from the discrete modeling efforts in the literature. We obtain sufficient conditions on the existence of a unique and exactly two periodic solutions and analyze the stability of each periodic solution, respectively. We also provide a brief discussion and several numerical examples to illustrate our theoretical results.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0297\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0297","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Modeling Wolbachia infection frequency in mosquito populations via a continuous periodic switching model
Abstract In this article, we develop a continuous periodic switching model depicting Wolbachia infection frequency dynamics in mosquito populations by releasing Wolbachia-infected mosquitoes, which is different from the discrete modeling efforts in the literature. We obtain sufficient conditions on the existence of a unique and exactly two periodic solutions and analyze the stability of each periodic solution, respectively. We also provide a brief discussion and several numerical examples to illustrate our theoretical results.