Existence and multiplicity of solutions for a quasilinear system with locally superlinear condition

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Cuiling Liu, Xingyong Zhang
{"title":"Existence and multiplicity of solutions for a quasilinear system with locally superlinear condition","authors":"Cuiling Liu, Xingyong Zhang","doi":"10.1515/anona-2022-0289","DOIUrl":null,"url":null,"abstract":"Abstract We investigate the existence and multiplicity of weak solutions for a nonlinear Kirchhoff type quasilinear elliptic system on the whole space R N {{\\mathbb{R}}}^{N} . We assume that the nonlinear term satisfies the locally super- ( m 1 , m 2 ) \\left({m}_{1},{m}_{2}) condition, that is, lim ∣ ( u , v ) ∣ → + ∞ F ( x , u , v ) ∣ u ∣ m 1 + ∣ v ∣ m 2 = + ∞ {\\mathrm{lim}}_{| \\left(u,v)| \\to +\\infty }\\frac{F\\left(x,u,v)}{| u{| }^{{m}_{1}}+| v{| }^{{m}_{2}}}=+\\infty for a.e. x ∈ G x\\in G , where G G is a domain in R N {{\\mathbb{R}}}^{N} , which is weaker than the well-known Ambrosseti-Rabinowitz condition and the naturally global restriction, lim ∣ ( u , v ) ∣ → + ∞ F ( x , u , v ) ∣ u ∣ m 1 + ∣ v ∣ m 2 = + ∞ {\\mathrm{lim}}_{| \\left(u,v)| \\to +\\infty }\\frac{F\\left(x,u,v)}{| u{| }^{{m}_{1}}+| v{| }^{{m}_{2}}}=+\\infty for a.e. x ∈ R N x\\in {{\\mathbb{R}}}^{N} . We obtain that the system has at least one weak solution by using the classical mountain pass theorem. To a certain extent, our theorems extend the results of Tang et al. [Nontrivial solutions for Schrodinger equation with local super-quadratic conditions, J. Dynam. Differ. Equ. 31 (2019), no. 1, 369–383]. Moreover, under the aforementioned naturally global restriction, we obtain that the system has infinitely many weak solutions of high energy by using the symmetric mountain pass theorem, which is different from those results of Wang et al. [Existence and multiplicity of solutions for a class of quasilinear elliptic systems in Orlicz-Sobolev spaces, J. Nonlinear Sci. Appl. 10 (2017), no. 7, 3792–3814] even if we consider the system on the bounded domain with Dirichlet boundary condition.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0289","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract We investigate the existence and multiplicity of weak solutions for a nonlinear Kirchhoff type quasilinear elliptic system on the whole space R N {{\mathbb{R}}}^{N} . We assume that the nonlinear term satisfies the locally super- ( m 1 , m 2 ) \left({m}_{1},{m}_{2}) condition, that is, lim ∣ ( u , v ) ∣ → + ∞ F ( x , u , v ) ∣ u ∣ m 1 + ∣ v ∣ m 2 = + ∞ {\mathrm{lim}}_{| \left(u,v)| \to +\infty }\frac{F\left(x,u,v)}{| u{| }^{{m}_{1}}+| v{| }^{{m}_{2}}}=+\infty for a.e. x ∈ G x\in G , where G G is a domain in R N {{\mathbb{R}}}^{N} , which is weaker than the well-known Ambrosseti-Rabinowitz condition and the naturally global restriction, lim ∣ ( u , v ) ∣ → + ∞ F ( x , u , v ) ∣ u ∣ m 1 + ∣ v ∣ m 2 = + ∞ {\mathrm{lim}}_{| \left(u,v)| \to +\infty }\frac{F\left(x,u,v)}{| u{| }^{{m}_{1}}+| v{| }^{{m}_{2}}}=+\infty for a.e. x ∈ R N x\in {{\mathbb{R}}}^{N} . We obtain that the system has at least one weak solution by using the classical mountain pass theorem. To a certain extent, our theorems extend the results of Tang et al. [Nontrivial solutions for Schrodinger equation with local super-quadratic conditions, J. Dynam. Differ. Equ. 31 (2019), no. 1, 369–383]. Moreover, under the aforementioned naturally global restriction, we obtain that the system has infinitely many weak solutions of high energy by using the symmetric mountain pass theorem, which is different from those results of Wang et al. [Existence and multiplicity of solutions for a class of quasilinear elliptic systems in Orlicz-Sobolev spaces, J. Nonlinear Sci. Appl. 10 (2017), no. 7, 3792–3814] even if we consider the system on the bounded domain with Dirichlet boundary condition.
一类具有局部超线性条件的拟线性系统解的存在性和多重性
摘要我们研究了一个非线性Kirchhoff型拟线性椭圆系统在整个空间RN上弱解的存在性和多重性。我们假设非线性项满足局部超(m1,m2)\左({m}_{1} ,{m}_{2} )条件,即limŞ(u,v)Ş→ + ∞ F(x,u,v^{{m}_{1} }+|v{|}^{{m}_{2} {}=+\infty对于a.e.x∈G中的G,其中G G是R N{\mathbb{R}}^{N}中的一个域,它弱于众所周知的Ambrosseti-Rabinowitz条件和自然全局限制→ + ∞ F(x,u,v^{{m}_{1} }+|v{|}^{{m}_{2} {\mathbb{R}}中的a.e.x∈R N x\=+\infty。利用经典的山口定理,我们得到系统至少有一个弱解。在一定程度上,我们的定理扩展了Tang等人的结果。[具有局部超二次条件的薛定谔方程的非平凡解,J.Dynam.Differ.Equ.31(2019),no.1369–383]。此外,在上述自然全局约束下,我们利用对称山口定理得到了该系统具有无穷多个高能弱解,这与Wang等人的结果不同。〔Orlicz-Sobolev空间中一类拟线性椭圆系统解的存在性和多重性,J。非线性科学。Appl。10(2017),no.723792–3814],即使我们考虑具有Dirichlet边界条件的有界域上的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信