{"title":"非线性kirchhoff型方程的无穷多局域半经典态","authors":"Binhua Feng, Da-Bin Wang, Zhi-Guo Wu","doi":"10.1515/anona-2022-0296","DOIUrl":null,"url":null,"abstract":"Abstract We deal with localized semiclassical states for singularly perturbed Kirchhoff-type equation as follows: − ε 2 a + ε b ∫ R 3 ∣ ∇ v ∣ 2 d x Δ v + V ( x ) v = P ( x ) f ( v ) , x ∈ R 3 , -\\left({\\varepsilon }^{2}a+\\varepsilon b\\mathop{\\int }\\limits_{{{\\mathbb{R}}}^{3}}| \\nabla v{| }^{2}{\\rm{d}}x\\right)\\Delta v+V\\left(x)v=P\\left(x)f\\left(v),\\hspace{1em}x\\in {{\\mathbb{R}}}^{3}, where V , P ∈ C 1 ( R 3 , R ) V,P\\in {C}^{1}\\left({{\\mathbb{R}}}^{3},{\\mathbb{R}}) and bounded away from zero. By applying the penalization approach together with the Nehari manifold approach in the studies of Szulkin and Weth, we obtain the existence of an infinite sequence of localized solutions of higher topological type. In addition, we also give a concrete set as the concentration position of these localized solutions. It is noted that, in our main results, f f only belongs to C ( R , R ) C\\left({\\mathbb{R}},{\\mathbb{R}}) and does not satisfy the Ambrosetti-Rabinowitz-type condition.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Infinitely many localized semiclassical states for nonlinear Kirchhoff-type equation\",\"authors\":\"Binhua Feng, Da-Bin Wang, Zhi-Guo Wu\",\"doi\":\"10.1515/anona-2022-0296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We deal with localized semiclassical states for singularly perturbed Kirchhoff-type equation as follows: − ε 2 a + ε b ∫ R 3 ∣ ∇ v ∣ 2 d x Δ v + V ( x ) v = P ( x ) f ( v ) , x ∈ R 3 , -\\\\left({\\\\varepsilon }^{2}a+\\\\varepsilon b\\\\mathop{\\\\int }\\\\limits_{{{\\\\mathbb{R}}}^{3}}| \\\\nabla v{| }^{2}{\\\\rm{d}}x\\\\right)\\\\Delta v+V\\\\left(x)v=P\\\\left(x)f\\\\left(v),\\\\hspace{1em}x\\\\in {{\\\\mathbb{R}}}^{3}, where V , P ∈ C 1 ( R 3 , R ) V,P\\\\in {C}^{1}\\\\left({{\\\\mathbb{R}}}^{3},{\\\\mathbb{R}}) and bounded away from zero. By applying the penalization approach together with the Nehari manifold approach in the studies of Szulkin and Weth, we obtain the existence of an infinite sequence of localized solutions of higher topological type. In addition, we also give a concrete set as the concentration position of these localized solutions. It is noted that, in our main results, f f only belongs to C ( R , R ) C\\\\left({\\\\mathbb{R}},{\\\\mathbb{R}}) and does not satisfy the Ambrosetti-Rabinowitz-type condition.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0296\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0296","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
摘要
我们处理奇摄动kirchhoff型方程的局域半经典态:−ε 2a + ε b∫R 3∣∇v∣2d x Δ v + v (x) v = P (x) f (v), x∈R 3, -\left({\varepsilon }^{2}a+\varepsilon b\mathop{\int }\limits_{{{\mathbb{R}}}^{3.}}| \nabla v{| }^{2}{\rm{d}}x\right)\Delta v+ v\left(x)v=P\left(x)f\left(v);\hspace{1em}x\in {{\mathbb{R}}}^{3.},其中V,P∈c1 (r3, R) V,P\in {c}^{1}\left({{\mathbb{R}}}^{3.},{\mathbb{R}}),从零开始跳跃。将惩罚方法与Nehari流形方法一起应用于Szulkin和Weth的研究中,得到了一类高拓扑型局部解的无穷序列的存在性。此外,我们还给出了一个具体集合作为这些局部解的集中位置。值得注意的是,在我们的主要结果中,f只属于C (R, R) C\left({\mathbb{R}},{\mathbb{R}}),不满足ambrosetti - rabinowitz型条件。
Infinitely many localized semiclassical states for nonlinear Kirchhoff-type equation
Abstract We deal with localized semiclassical states for singularly perturbed Kirchhoff-type equation as follows: − ε 2 a + ε b ∫ R 3 ∣ ∇ v ∣ 2 d x Δ v + V ( x ) v = P ( x ) f ( v ) , x ∈ R 3 , -\left({\varepsilon }^{2}a+\varepsilon b\mathop{\int }\limits_{{{\mathbb{R}}}^{3}}| \nabla v{| }^{2}{\rm{d}}x\right)\Delta v+V\left(x)v=P\left(x)f\left(v),\hspace{1em}x\in {{\mathbb{R}}}^{3}, where V , P ∈ C 1 ( R 3 , R ) V,P\in {C}^{1}\left({{\mathbb{R}}}^{3},{\mathbb{R}}) and bounded away from zero. By applying the penalization approach together with the Nehari manifold approach in the studies of Szulkin and Weth, we obtain the existence of an infinite sequence of localized solutions of higher topological type. In addition, we also give a concrete set as the concentration position of these localized solutions. It is noted that, in our main results, f f only belongs to C ( R , R ) C\left({\mathbb{R}},{\mathbb{R}}) and does not satisfy the Ambrosetti-Rabinowitz-type condition.