{"title":"具有渐近三次项的kirchhoff型问题具有规定节点数的节点解","authors":"Tao Wang, Yanling Yang, Hui Guo","doi":"10.1515/anona-2022-0323","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we study the following Kirchhoff equation: (0.1) − ( a + b ‖ ∇ u ‖ L 2 ( R 3 ) 2 ) Δ u + V ( ∣ x ∣ ) u = f ( u ) in R 3 , -(a+b\\Vert \\nabla u{\\Vert }_{{L}^{2}\\left({{\\mathbb{R}}}^{3})}^{2})\\Delta u+V\\left(| x| )u=f\\left(u)\\hspace{1.0em}\\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{{\\mathbb{R}}}^{3}, where a , b > 0 a,b\\gt 0 , V V is a positive radial potential function, and f ( u ) f\\left(u) is an asymptotically cubic term. The nonlocal term b ‖ ∇ u ‖ L 2 ( R 3 ) 2 Δ u b\\Vert \\nabla u{\\Vert }_{{L}^{2}\\left({{\\mathbb{R}}}^{3})}^{2}\\Delta u is 3-homogeneous in the sense that b ‖ ∇ t u ‖ L 2 ( R 3 ) 2 Δ ( t u ) = t 3 b ‖ ∇ u ‖ L 2 ( R 3 ) 2 Δ u b\\Vert \\nabla tu{\\Vert }_{{L}^{2}\\left({{\\mathbb{R}}}^{3})}^{2}\\Delta \\left(tu)={t}^{3}b\\Vert \\nabla u{\\Vert }_{{L}^{2}\\left({{\\mathbb{R}}}^{3})}^{2}\\Delta u , so it competes complicatedly with the asymptotically cubic term f ( u ) f\\left(u) , which is totally different from the super-cubic case. By using the Miranda theorem and classifying the domain partitions, via the gluing method and variational method, we prove that for each positive integer k k , equation (0.1) has a radial nodal solution U k , 4 b {U}_{k,4}^{b} , which has exactly k + 1 k+1 nodal domains. Moreover, we show that the energy of U k , 4 b {U}_{k,4}^{b} is strictly increasing in k k , and for any sequence { b n } → 0 + , \\left\\{{b}_{n}\\right\\}\\to {0}_{+}, up to a subsequence, U k , 4 b n {U}_{k,4}^{{b}_{n}} converges strongly to U k , 4 0 {U}_{k,4}^{0} in H 1 ( R 3 ) {H}^{1}\\left({{\\mathbb{R}}}^{3}) , where U k , 4 0 {U}_{k,4}^{0} also has k + 1 k+1 nodal domains exactly and solves the classical Schrödinger equation: − a Δ u + V ( ∣ x ∣ ) u = f ( u ) in R 3 . -a\\Delta u+V\\left(| x| )u=f\\left(u)\\hspace{1.0em}\\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{{\\mathbb{R}}}^{3}. Our results extend the ones in Deng et al. from the super-cubic case to the asymptotically cubic case.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nodal solutions with a prescribed number of nodes for the Kirchhoff-type problem with an asymptotically cubic term\",\"authors\":\"Tao Wang, Yanling Yang, Hui Guo\",\"doi\":\"10.1515/anona-2022-0323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we study the following Kirchhoff equation: (0.1) − ( a + b ‖ ∇ u ‖ L 2 ( R 3 ) 2 ) Δ u + V ( ∣ x ∣ ) u = f ( u ) in R 3 , -(a+b\\\\Vert \\\\nabla u{\\\\Vert }_{{L}^{2}\\\\left({{\\\\mathbb{R}}}^{3})}^{2})\\\\Delta u+V\\\\left(| x| )u=f\\\\left(u)\\\\hspace{1.0em}\\\\hspace{0.1em}\\\\text{in}\\\\hspace{0.1em}\\\\hspace{0.33em}{{\\\\mathbb{R}}}^{3}, where a , b > 0 a,b\\\\gt 0 , V V is a positive radial potential function, and f ( u ) f\\\\left(u) is an asymptotically cubic term. The nonlocal term b ‖ ∇ u ‖ L 2 ( R 3 ) 2 Δ u b\\\\Vert \\\\nabla u{\\\\Vert }_{{L}^{2}\\\\left({{\\\\mathbb{R}}}^{3})}^{2}\\\\Delta u is 3-homogeneous in the sense that b ‖ ∇ t u ‖ L 2 ( R 3 ) 2 Δ ( t u ) = t 3 b ‖ ∇ u ‖ L 2 ( R 3 ) 2 Δ u b\\\\Vert \\\\nabla tu{\\\\Vert }_{{L}^{2}\\\\left({{\\\\mathbb{R}}}^{3})}^{2}\\\\Delta \\\\left(tu)={t}^{3}b\\\\Vert \\\\nabla u{\\\\Vert }_{{L}^{2}\\\\left({{\\\\mathbb{R}}}^{3})}^{2}\\\\Delta u , so it competes complicatedly with the asymptotically cubic term f ( u ) f\\\\left(u) , which is totally different from the super-cubic case. By using the Miranda theorem and classifying the domain partitions, via the gluing method and variational method, we prove that for each positive integer k k , equation (0.1) has a radial nodal solution U k , 4 b {U}_{k,4}^{b} , which has exactly k + 1 k+1 nodal domains. Moreover, we show that the energy of U k , 4 b {U}_{k,4}^{b} is strictly increasing in k k , and for any sequence { b n } → 0 + , \\\\left\\\\{{b}_{n}\\\\right\\\\}\\\\to {0}_{+}, up to a subsequence, U k , 4 b n {U}_{k,4}^{{b}_{n}} converges strongly to U k , 4 0 {U}_{k,4}^{0} in H 1 ( R 3 ) {H}^{1}\\\\left({{\\\\mathbb{R}}}^{3}) , where U k , 4 0 {U}_{k,4}^{0} also has k + 1 k+1 nodal domains exactly and solves the classical Schrödinger equation: − a Δ u + V ( ∣ x ∣ ) u = f ( u ) in R 3 . -a\\\\Delta u+V\\\\left(| x| )u=f\\\\left(u)\\\\hspace{1.0em}\\\\hspace{0.1em}\\\\text{in}\\\\hspace{0.1em}\\\\hspace{0.33em}{{\\\\mathbb{R}}}^{3}. Our results extend the ones in Deng et al. from the super-cubic case to the asymptotically cubic case.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0323\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0323","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
摘要本文研究了以下Kirchhoff方程:(0.1)−(a+b‖∇u‖l2 (R 3) 2) Δ u+V(∣x∣)u=f (u) In R 3, -(a+b \Vert\nabla{\Vert _L}^{{2 }{}\left ({{\mathbb{R}}} ^{3})}^{2})\Delta u+V \left (| x|)u=f \left (u) \hspace{1.0em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}} ^{3},其中a,b > 0 a,b \gt 0, V V是一个正径向势函数,f (u) f \left (u)是一个渐近三次项。非局部项b‖∇u‖l2 (r2) 2 Δ u b \Vert\nabla{\Vert _L}^{{2 }{}\left ({{\mathbb{R}}} ^{3})^}2 {}\Delta u是3-齐次的,意思是b‖∇u‖l2 (r2) 2 Δ (r2) 2 Δ u b \Vert\nabla tu {\Vert _L}^{{2 }{}\left ({{\mathbb{R}}} ^{3})}^{2 }\Delta\left (tu)={t}^{3b}\Vert\nabla u {\Vert _L}^{{2}{}\left ({{\mathbb{R}}} ^3{)}^}2{}\Delta u,所以它与渐近三次项f (u) f \left (u)竞争很复杂,这与超三次情况完全不同。利用Miranda定理并对区域划分进行分类,通过粘接法和变分法证明了对于每一个正整数k k,方程(0.1)有一个径向节点解U k,4 b U k,{4^}b,它恰好有k+1个k+1个节点域。此外,我们证明了U k, 4b {U_k},{4^}b的能量在k k中{是}严格递增的,并且对于任意序列b n{→0} +,{}{}\left {{b_n}{}\right} \to 0_+,{直到}一{个子序列,U k, 4b n U_k,4^}b_n{在H 1 (R 3) H^1 }{}{{}{}}{}{}{}{}{}\left ({{\mathbb{R}}} ^3)中{强}收敛{于U k, 40 U_k,4}^{b_n在H 1 (R 3) H^1中也有k+1 k+1}节点{域,}并方程:−a Δ U + V(∣x∣)U = f (U)在R 3中。-a \Delta u+V \left (| x|)u=f \left (u) \hspace{1.0em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}} ^3。我们的结果将Deng等人的结果从超立方情况扩展{到}渐近立方情况。
Nodal solutions with a prescribed number of nodes for the Kirchhoff-type problem with an asymptotically cubic term
Abstract In this article, we study the following Kirchhoff equation: (0.1) − ( a + b ‖ ∇ u ‖ L 2 ( R 3 ) 2 ) Δ u + V ( ∣ x ∣ ) u = f ( u ) in R 3 , -(a+b\Vert \nabla u{\Vert }_{{L}^{2}\left({{\mathbb{R}}}^{3})}^{2})\Delta u+V\left(| x| )u=f\left(u)\hspace{1.0em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{3}, where a , b > 0 a,b\gt 0 , V V is a positive radial potential function, and f ( u ) f\left(u) is an asymptotically cubic term. The nonlocal term b ‖ ∇ u ‖ L 2 ( R 3 ) 2 Δ u b\Vert \nabla u{\Vert }_{{L}^{2}\left({{\mathbb{R}}}^{3})}^{2}\Delta u is 3-homogeneous in the sense that b ‖ ∇ t u ‖ L 2 ( R 3 ) 2 Δ ( t u ) = t 3 b ‖ ∇ u ‖ L 2 ( R 3 ) 2 Δ u b\Vert \nabla tu{\Vert }_{{L}^{2}\left({{\mathbb{R}}}^{3})}^{2}\Delta \left(tu)={t}^{3}b\Vert \nabla u{\Vert }_{{L}^{2}\left({{\mathbb{R}}}^{3})}^{2}\Delta u , so it competes complicatedly with the asymptotically cubic term f ( u ) f\left(u) , which is totally different from the super-cubic case. By using the Miranda theorem and classifying the domain partitions, via the gluing method and variational method, we prove that for each positive integer k k , equation (0.1) has a radial nodal solution U k , 4 b {U}_{k,4}^{b} , which has exactly k + 1 k+1 nodal domains. Moreover, we show that the energy of U k , 4 b {U}_{k,4}^{b} is strictly increasing in k k , and for any sequence { b n } → 0 + , \left\{{b}_{n}\right\}\to {0}_{+}, up to a subsequence, U k , 4 b n {U}_{k,4}^{{b}_{n}} converges strongly to U k , 4 0 {U}_{k,4}^{0} in H 1 ( R 3 ) {H}^{1}\left({{\mathbb{R}}}^{3}) , where U k , 4 0 {U}_{k,4}^{0} also has k + 1 k+1 nodal domains exactly and solves the classical Schrödinger equation: − a Δ u + V ( ∣ x ∣ ) u = f ( u ) in R 3 . -a\Delta u+V\left(| x| )u=f\left(u)\hspace{1.0em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{3}. Our results extend the ones in Deng et al. from the super-cubic case to the asymptotically cubic case.