{"title":"不含Ambrosetti-Rabinowitz条件的双相变指数方程解的存在性","authors":"Jingjing Liu, P. Pucci","doi":"10.1515/anona-2022-0292","DOIUrl":null,"url":null,"abstract":"Abstract The article deals with the existence of a pair of nontrivial nonnegative and nonpositive solutions for a nonlinear weighted quasilinear equation in R N {{\\mathbb{R}}}^{N} , which involves a double-phase general variable exponent elliptic operator A {\\bf{A}} . More precisely, A {\\bf{A}} has behaviors like ∣ ξ ∣ q ( x ) − 2 ξ {| \\xi | }^{q\\left(x)-2}\\xi if ∣ ξ ∣ | \\xi | is small and like ∣ ξ ∣ p ( x ) − 2 ξ {| \\xi | }^{p\\left(x)-2}\\xi if ∣ ξ ∣ | \\xi | is large. Existence is proved by the Cerami condition instead of the classical Palais-Smale condition, so that the nonlinear term f ( x , u ) f\\left(x,u) does not necessarily have to satisfy the Ambrosetti-Rabinowitz condition.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Existence of solutions for a double-phase variable exponent equation without the Ambrosetti-Rabinowitz condition\",\"authors\":\"Jingjing Liu, P. Pucci\",\"doi\":\"10.1515/anona-2022-0292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The article deals with the existence of a pair of nontrivial nonnegative and nonpositive solutions for a nonlinear weighted quasilinear equation in R N {{\\\\mathbb{R}}}^{N} , which involves a double-phase general variable exponent elliptic operator A {\\\\bf{A}} . More precisely, A {\\\\bf{A}} has behaviors like ∣ ξ ∣ q ( x ) − 2 ξ {| \\\\xi | }^{q\\\\left(x)-2}\\\\xi if ∣ ξ ∣ | \\\\xi | is small and like ∣ ξ ∣ p ( x ) − 2 ξ {| \\\\xi | }^{p\\\\left(x)-2}\\\\xi if ∣ ξ ∣ | \\\\xi | is large. Existence is proved by the Cerami condition instead of the classical Palais-Smale condition, so that the nonlinear term f ( x , u ) f\\\\left(x,u) does not necessarily have to satisfy the Ambrosetti-Rabinowitz condition.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0292\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0292","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4
摘要
摘要本文讨论了R N{\mathbb{R}}^{N}中一个非线性加权拟线性方程的一对非平凡非负和非正解的存在性,该方程涉及一个双相广义变指数椭圆算子a{\bf{a}。更准确地说,A{\bf{A}}具有类似于如果Şξ|\nenenebc xi |很小则Şξ。用Cerami条件而不是经典的Palais-Smale条件证明了存在性,使得非线性项f(x,u)f\left(x,u)不一定满足Ambrosetti-Rabinowitz条件。
Existence of solutions for a double-phase variable exponent equation without the Ambrosetti-Rabinowitz condition
Abstract The article deals with the existence of a pair of nontrivial nonnegative and nonpositive solutions for a nonlinear weighted quasilinear equation in R N {{\mathbb{R}}}^{N} , which involves a double-phase general variable exponent elliptic operator A {\bf{A}} . More precisely, A {\bf{A}} has behaviors like ∣ ξ ∣ q ( x ) − 2 ξ {| \xi | }^{q\left(x)-2}\xi if ∣ ξ ∣ | \xi | is small and like ∣ ξ ∣ p ( x ) − 2 ξ {| \xi | }^{p\left(x)-2}\xi if ∣ ξ ∣ | \xi | is large. Existence is proved by the Cerami condition instead of the classical Palais-Smale condition, so that the nonlinear term f ( x , u ) f\left(x,u) does not necessarily have to satisfy the Ambrosetti-Rabinowitz condition.