{"title":"Boussinesq系统的全局Sobolev正则解","authors":"Xiaofeng Zhao, Weijia Li, Weiping Yan","doi":"10.1515/anona-2022-0298","DOIUrl":null,"url":null,"abstract":"Abstract This article is concerned with the study of the initial value problem for the three-dimensional viscous Boussinesq system in the thin domain Ω ≔ R 2 × ( 0 , R ) \\Omega := {{\\mathbb{R}}}^{2}\\times \\left(0,R) . We construct a global finite energy Sobolev regularity solution ( v , ρ ) ∈ H s ( Ω ) × H s ( Ω ) \\left({\\bf{v}},\\rho )\\in {H}^{s}\\left(\\Omega )\\times {{\\mathbb{H}}}^{s}\\left(\\Omega ) with the small initial data in the Sobolev space H s + 2 ( Ω ) × H s + 2 ( Ω ) {H}^{s+2}\\left(\\Omega )\\times {{\\mathbb{H}}}^{s+2}\\left(\\Omega ) . Some features of this article are the following: (i) we do not require the initial data to be axisymmetric; (ii) the Sobolev exponent s s can be an arbitrary big positive integer; and (iii) the explicit asymptotic expansion formulas of Sobolev regular solution is given. The key point of the proof depends on the structure of the perturbation system by means of a suitable initial approximation function of the Nash-Moser iteration scheme.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Global Sobolev regular solution for Boussinesq system\",\"authors\":\"Xiaofeng Zhao, Weijia Li, Weiping Yan\",\"doi\":\"10.1515/anona-2022-0298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article is concerned with the study of the initial value problem for the three-dimensional viscous Boussinesq system in the thin domain Ω ≔ R 2 × ( 0 , R ) \\\\Omega := {{\\\\mathbb{R}}}^{2}\\\\times \\\\left(0,R) . We construct a global finite energy Sobolev regularity solution ( v , ρ ) ∈ H s ( Ω ) × H s ( Ω ) \\\\left({\\\\bf{v}},\\\\rho )\\\\in {H}^{s}\\\\left(\\\\Omega )\\\\times {{\\\\mathbb{H}}}^{s}\\\\left(\\\\Omega ) with the small initial data in the Sobolev space H s + 2 ( Ω ) × H s + 2 ( Ω ) {H}^{s+2}\\\\left(\\\\Omega )\\\\times {{\\\\mathbb{H}}}^{s+2}\\\\left(\\\\Omega ) . Some features of this article are the following: (i) we do not require the initial data to be axisymmetric; (ii) the Sobolev exponent s s can be an arbitrary big positive integer; and (iii) the explicit asymptotic expansion formulas of Sobolev regular solution is given. The key point of the proof depends on the structure of the perturbation system by means of a suitable initial approximation function of the Nash-Moser iteration scheme.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0298\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0298","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Global Sobolev regular solution for Boussinesq system
Abstract This article is concerned with the study of the initial value problem for the three-dimensional viscous Boussinesq system in the thin domain Ω ≔ R 2 × ( 0 , R ) \Omega := {{\mathbb{R}}}^{2}\times \left(0,R) . We construct a global finite energy Sobolev regularity solution ( v , ρ ) ∈ H s ( Ω ) × H s ( Ω ) \left({\bf{v}},\rho )\in {H}^{s}\left(\Omega )\times {{\mathbb{H}}}^{s}\left(\Omega ) with the small initial data in the Sobolev space H s + 2 ( Ω ) × H s + 2 ( Ω ) {H}^{s+2}\left(\Omega )\times {{\mathbb{H}}}^{s+2}\left(\Omega ) . Some features of this article are the following: (i) we do not require the initial data to be axisymmetric; (ii) the Sobolev exponent s s can be an arbitrary big positive integer; and (iii) the explicit asymptotic expansion formulas of Sobolev regular solution is given. The key point of the proof depends on the structure of the perturbation system by means of a suitable initial approximation function of the Nash-Moser iteration scheme.