Boussinesq系统的全局Sobolev正则解

IF 3.2 1区 数学 Q1 MATHEMATICS
Xiaofeng Zhao, Weijia Li, Weiping Yan
{"title":"Boussinesq系统的全局Sobolev正则解","authors":"Xiaofeng Zhao, Weijia Li, Weiping Yan","doi":"10.1515/anona-2022-0298","DOIUrl":null,"url":null,"abstract":"Abstract This article is concerned with the study of the initial value problem for the three-dimensional viscous Boussinesq system in the thin domain Ω ≔ R 2 × ( 0 , R ) \\Omega := {{\\mathbb{R}}}^{2}\\times \\left(0,R) . We construct a global finite energy Sobolev regularity solution ( v , ρ ) ∈ H s ( Ω ) × H s ( Ω ) \\left({\\bf{v}},\\rho )\\in {H}^{s}\\left(\\Omega )\\times {{\\mathbb{H}}}^{s}\\left(\\Omega ) with the small initial data in the Sobolev space H s + 2 ( Ω ) × H s + 2 ( Ω ) {H}^{s+2}\\left(\\Omega )\\times {{\\mathbb{H}}}^{s+2}\\left(\\Omega ) . Some features of this article are the following: (i) we do not require the initial data to be axisymmetric; (ii) the Sobolev exponent s s can be an arbitrary big positive integer; and (iii) the explicit asymptotic expansion formulas of Sobolev regular solution is given. The key point of the proof depends on the structure of the perturbation system by means of a suitable initial approximation function of the Nash-Moser iteration scheme.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Global Sobolev regular solution for Boussinesq system\",\"authors\":\"Xiaofeng Zhao, Weijia Li, Weiping Yan\",\"doi\":\"10.1515/anona-2022-0298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article is concerned with the study of the initial value problem for the three-dimensional viscous Boussinesq system in the thin domain Ω ≔ R 2 × ( 0 , R ) \\\\Omega := {{\\\\mathbb{R}}}^{2}\\\\times \\\\left(0,R) . We construct a global finite energy Sobolev regularity solution ( v , ρ ) ∈ H s ( Ω ) × H s ( Ω ) \\\\left({\\\\bf{v}},\\\\rho )\\\\in {H}^{s}\\\\left(\\\\Omega )\\\\times {{\\\\mathbb{H}}}^{s}\\\\left(\\\\Omega ) with the small initial data in the Sobolev space H s + 2 ( Ω ) × H s + 2 ( Ω ) {H}^{s+2}\\\\left(\\\\Omega )\\\\times {{\\\\mathbb{H}}}^{s+2}\\\\left(\\\\Omega ) . Some features of this article are the following: (i) we do not require the initial data to be axisymmetric; (ii) the Sobolev exponent s s can be an arbitrary big positive integer; and (iii) the explicit asymptotic expansion formulas of Sobolev regular solution is given. The key point of the proof depends on the structure of the perturbation system by means of a suitable initial approximation function of the Nash-Moser iteration scheme.\",\"PeriodicalId\":51301,\"journal\":{\"name\":\"Advances in Nonlinear Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0298\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0298","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文研究了三维粘性Boussinesq系统在薄域ΩR2×(0,R)\Omega:={{\mathbb{R}}}^{2}\times\left(0,R)中的初值问题。我们用Sobolev空间中的小初始数据构造了一个全局有限能量Sobolev正则解(v,ρ)∈HS(Ω)×HS(Ω。本文的一些特点如下:(i)我们不要求初始数据是轴对称的;(ii)Sobolev指数s可以是任意的大正整数;(iii)给出了Sobolev正则解的显式渐近展开式。通过适当的Nash-Moser迭代方案的初始逼近函数,证明的关键点取决于扰动系统的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Sobolev regular solution for Boussinesq system
Abstract This article is concerned with the study of the initial value problem for the three-dimensional viscous Boussinesq system in the thin domain Ω ≔ R 2 × ( 0 , R ) \Omega := {{\mathbb{R}}}^{2}\times \left(0,R) . We construct a global finite energy Sobolev regularity solution ( v , ρ ) ∈ H s ( Ω ) × H s ( Ω ) \left({\bf{v}},\rho )\in {H}^{s}\left(\Omega )\times {{\mathbb{H}}}^{s}\left(\Omega ) with the small initial data in the Sobolev space H s + 2 ( Ω ) × H s + 2 ( Ω ) {H}^{s+2}\left(\Omega )\times {{\mathbb{H}}}^{s+2}\left(\Omega ) . Some features of this article are the following: (i) we do not require the initial data to be axisymmetric; (ii) the Sobolev exponent s s can be an arbitrary big positive integer; and (iii) the explicit asymptotic expansion formulas of Sobolev regular solution is given. The key point of the proof depends on the structure of the perturbation system by means of a suitable initial approximation function of the Nash-Moser iteration scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Nonlinear Analysis
Advances in Nonlinear Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
6.00
自引率
9.50%
发文量
60
审稿时长
30 weeks
期刊介绍: Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信