Boussinesq系统的全局Sobolev正则解

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiaofeng Zhao, Weijia Li, Weiping Yan
{"title":"Boussinesq系统的全局Sobolev正则解","authors":"Xiaofeng Zhao, Weijia Li, Weiping Yan","doi":"10.1515/anona-2022-0298","DOIUrl":null,"url":null,"abstract":"Abstract This article is concerned with the study of the initial value problem for the three-dimensional viscous Boussinesq system in the thin domain Ω ≔ R 2 × ( 0 , R ) \\Omega := {{\\mathbb{R}}}^{2}\\times \\left(0,R) . We construct a global finite energy Sobolev regularity solution ( v , ρ ) ∈ H s ( Ω ) × H s ( Ω ) \\left({\\bf{v}},\\rho )\\in {H}^{s}\\left(\\Omega )\\times {{\\mathbb{H}}}^{s}\\left(\\Omega ) with the small initial data in the Sobolev space H s + 2 ( Ω ) × H s + 2 ( Ω ) {H}^{s+2}\\left(\\Omega )\\times {{\\mathbb{H}}}^{s+2}\\left(\\Omega ) . Some features of this article are the following: (i) we do not require the initial data to be axisymmetric; (ii) the Sobolev exponent s s can be an arbitrary big positive integer; and (iii) the explicit asymptotic expansion formulas of Sobolev regular solution is given. The key point of the proof depends on the structure of the perturbation system by means of a suitable initial approximation function of the Nash-Moser iteration scheme.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Global Sobolev regular solution for Boussinesq system\",\"authors\":\"Xiaofeng Zhao, Weijia Li, Weiping Yan\",\"doi\":\"10.1515/anona-2022-0298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article is concerned with the study of the initial value problem for the three-dimensional viscous Boussinesq system in the thin domain Ω ≔ R 2 × ( 0 , R ) \\\\Omega := {{\\\\mathbb{R}}}^{2}\\\\times \\\\left(0,R) . We construct a global finite energy Sobolev regularity solution ( v , ρ ) ∈ H s ( Ω ) × H s ( Ω ) \\\\left({\\\\bf{v}},\\\\rho )\\\\in {H}^{s}\\\\left(\\\\Omega )\\\\times {{\\\\mathbb{H}}}^{s}\\\\left(\\\\Omega ) with the small initial data in the Sobolev space H s + 2 ( Ω ) × H s + 2 ( Ω ) {H}^{s+2}\\\\left(\\\\Omega )\\\\times {{\\\\mathbb{H}}}^{s+2}\\\\left(\\\\Omega ) . Some features of this article are the following: (i) we do not require the initial data to be axisymmetric; (ii) the Sobolev exponent s s can be an arbitrary big positive integer; and (iii) the explicit asymptotic expansion formulas of Sobolev regular solution is given. The key point of the proof depends on the structure of the perturbation system by means of a suitable initial approximation function of the Nash-Moser iteration scheme.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0298\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0298","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文研究了三维粘性Boussinesq系统在薄域ΩR2×(0,R)\Omega:={{\mathbb{R}}}^{2}\times\left(0,R)中的初值问题。我们用Sobolev空间中的小初始数据构造了一个全局有限能量Sobolev正则解(v,ρ)∈HS(Ω)×HS(Ω。本文的一些特点如下:(i)我们不要求初始数据是轴对称的;(ii)Sobolev指数s可以是任意的大正整数;(iii)给出了Sobolev正则解的显式渐近展开式。通过适当的Nash-Moser迭代方案的初始逼近函数,证明的关键点取决于扰动系统的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Sobolev regular solution for Boussinesq system
Abstract This article is concerned with the study of the initial value problem for the three-dimensional viscous Boussinesq system in the thin domain Ω ≔ R 2 × ( 0 , R ) \Omega := {{\mathbb{R}}}^{2}\times \left(0,R) . We construct a global finite energy Sobolev regularity solution ( v , ρ ) ∈ H s ( Ω ) × H s ( Ω ) \left({\bf{v}},\rho )\in {H}^{s}\left(\Omega )\times {{\mathbb{H}}}^{s}\left(\Omega ) with the small initial data in the Sobolev space H s + 2 ( Ω ) × H s + 2 ( Ω ) {H}^{s+2}\left(\Omega )\times {{\mathbb{H}}}^{s+2}\left(\Omega ) . Some features of this article are the following: (i) we do not require the initial data to be axisymmetric; (ii) the Sobolev exponent s s can be an arbitrary big positive integer; and (iii) the explicit asymptotic expansion formulas of Sobolev regular solution is given. The key point of the proof depends on the structure of the perturbation system by means of a suitable initial approximation function of the Nash-Moser iteration scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信