Nodal solutions with a prescribed number of nodes for the Kirchhoff-type problem with an asymptotically cubic term

IF 3.2 1区 数学 Q1 MATHEMATICS
Tao Wang, Yanling Yang, Hui Guo
{"title":"Nodal solutions with a prescribed number of nodes for the Kirchhoff-type problem with an asymptotically cubic term","authors":"Tao Wang, Yanling Yang, Hui Guo","doi":"10.1515/anona-2022-0323","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we study the following Kirchhoff equation: (0.1) − ( a + b ‖ ∇ u ‖ L 2 ( R 3 ) 2 ) Δ u + V ( ∣ x ∣ ) u = f ( u ) in R 3 , -(a+b\\Vert \\nabla u{\\Vert }_{{L}^{2}\\left({{\\mathbb{R}}}^{3})}^{2})\\Delta u+V\\left(| x| )u=f\\left(u)\\hspace{1.0em}\\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{{\\mathbb{R}}}^{3}, where a , b > 0 a,b\\gt 0 , V V is a positive radial potential function, and f ( u ) f\\left(u) is an asymptotically cubic term. The nonlocal term b ‖ ∇ u ‖ L 2 ( R 3 ) 2 Δ u b\\Vert \\nabla u{\\Vert }_{{L}^{2}\\left({{\\mathbb{R}}}^{3})}^{2}\\Delta u is 3-homogeneous in the sense that b ‖ ∇ t u ‖ L 2 ( R 3 ) 2 Δ ( t u ) = t 3 b ‖ ∇ u ‖ L 2 ( R 3 ) 2 Δ u b\\Vert \\nabla tu{\\Vert }_{{L}^{2}\\left({{\\mathbb{R}}}^{3})}^{2}\\Delta \\left(tu)={t}^{3}b\\Vert \\nabla u{\\Vert }_{{L}^{2}\\left({{\\mathbb{R}}}^{3})}^{2}\\Delta u , so it competes complicatedly with the asymptotically cubic term f ( u ) f\\left(u) , which is totally different from the super-cubic case. By using the Miranda theorem and classifying the domain partitions, via the gluing method and variational method, we prove that for each positive integer k k , equation (0.1) has a radial nodal solution U k , 4 b {U}_{k,4}^{b} , which has exactly k + 1 k+1 nodal domains. Moreover, we show that the energy of U k , 4 b {U}_{k,4}^{b} is strictly increasing in k k , and for any sequence { b n } → 0 + , \\left\\{{b}_{n}\\right\\}\\to {0}_{+}, up to a subsequence, U k , 4 b n {U}_{k,4}^{{b}_{n}} converges strongly to U k , 4 0 {U}_{k,4}^{0} in H 1 ( R 3 ) {H}^{1}\\left({{\\mathbb{R}}}^{3}) , where U k , 4 0 {U}_{k,4}^{0} also has k + 1 k+1 nodal domains exactly and solves the classical Schrödinger equation: − a Δ u + V ( ∣ x ∣ ) u = f ( u ) in R 3 . -a\\Delta u+V\\left(| x| )u=f\\left(u)\\hspace{1.0em}\\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{{\\mathbb{R}}}^{3}. Our results extend the ones in Deng et al. from the super-cubic case to the asymptotically cubic case.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"12 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0323","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this article, we study the following Kirchhoff equation: (0.1) − ( a + b ‖ ∇ u ‖ L 2 ( R 3 ) 2 ) Δ u + V ( ∣ x ∣ ) u = f ( u ) in R 3 , -(a+b\Vert \nabla u{\Vert }_{{L}^{2}\left({{\mathbb{R}}}^{3})}^{2})\Delta u+V\left(| x| )u=f\left(u)\hspace{1.0em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{3}, where a , b > 0 a,b\gt 0 , V V is a positive radial potential function, and f ( u ) f\left(u) is an asymptotically cubic term. The nonlocal term b ‖ ∇ u ‖ L 2 ( R 3 ) 2 Δ u b\Vert \nabla u{\Vert }_{{L}^{2}\left({{\mathbb{R}}}^{3})}^{2}\Delta u is 3-homogeneous in the sense that b ‖ ∇ t u ‖ L 2 ( R 3 ) 2 Δ ( t u ) = t 3 b ‖ ∇ u ‖ L 2 ( R 3 ) 2 Δ u b\Vert \nabla tu{\Vert }_{{L}^{2}\left({{\mathbb{R}}}^{3})}^{2}\Delta \left(tu)={t}^{3}b\Vert \nabla u{\Vert }_{{L}^{2}\left({{\mathbb{R}}}^{3})}^{2}\Delta u , so it competes complicatedly with the asymptotically cubic term f ( u ) f\left(u) , which is totally different from the super-cubic case. By using the Miranda theorem and classifying the domain partitions, via the gluing method and variational method, we prove that for each positive integer k k , equation (0.1) has a radial nodal solution U k , 4 b {U}_{k,4}^{b} , which has exactly k + 1 k+1 nodal domains. Moreover, we show that the energy of U k , 4 b {U}_{k,4}^{b} is strictly increasing in k k , and for any sequence { b n } → 0 + , \left\{{b}_{n}\right\}\to {0}_{+}, up to a subsequence, U k , 4 b n {U}_{k,4}^{{b}_{n}} converges strongly to U k , 4 0 {U}_{k,4}^{0} in H 1 ( R 3 ) {H}^{1}\left({{\mathbb{R}}}^{3}) , where U k , 4 0 {U}_{k,4}^{0} also has k + 1 k+1 nodal domains exactly and solves the classical Schrödinger equation: − a Δ u + V ( ∣ x ∣ ) u = f ( u ) in R 3 . -a\Delta u+V\left(| x| )u=f\left(u)\hspace{1.0em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{3}. Our results extend the ones in Deng et al. from the super-cubic case to the asymptotically cubic case.
具有渐近三次项的kirchhoff型问题具有规定节点数的节点解
摘要本文研究了以下Kirchhoff方程:(0.1)−(a+b‖∇u‖l2 (R 3) 2) Δ u+V(∣x∣)u=f (u) In R 3, -(a+b \Vert\nabla{\Vert _L}^{{2 }{}\left ({{\mathbb{R}}} ^{3})}^{2})\Delta u+V \left (| x|)u=f \left (u) \hspace{1.0em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}} ^{3},其中a,b > 0 a,b \gt 0, V V是一个正径向势函数,f (u) f \left (u)是一个渐近三次项。非局部项b‖∇u‖l2 (r2) 2 Δ u b \Vert\nabla{\Vert _L}^{{2 }{}\left ({{\mathbb{R}}} ^{3})^}2 {}\Delta u是3-齐次的,意思是b‖∇u‖l2 (r2) 2 Δ (r2) 2 Δ u b \Vert\nabla tu {\Vert _L}^{{2 }{}\left ({{\mathbb{R}}} ^{3})}^{2 }\Delta\left (tu)={t}^{3b}\Vert\nabla u {\Vert _L}^{{2}{}\left ({{\mathbb{R}}} ^3{)}^}2{}\Delta u,所以它与渐近三次项f (u) f \left (u)竞争很复杂,这与超三次情况完全不同。利用Miranda定理并对区域划分进行分类,通过粘接法和变分法证明了对于每一个正整数k k,方程(0.1)有一个径向节点解U k,4 b U k,{4^}b,它恰好有k+1个k+1个节点域。此外,我们证明了U k, 4b {U_k},{4^}b的能量在k k中{是}严格递增的,并且对于任意序列b n{→0} +,{}{}\left {{b_n}{}\right} \to 0_+,{直到}一{个子序列,U k, 4b n U_k,4^}b_n{在H 1 (R 3) H^1 }{}{{}{}}{}{}{}{}{}\left ({{\mathbb{R}}} ^3)中{强}收敛{于U k, 40 U_k,4}^{b_n在H 1 (R 3) H^1中也有k+1 k+1}节点{域,}并方程:−a Δ U + V(∣x∣)U = f (U)在R 3中。-a \Delta u+V \left (| x|)u=f \left (u) \hspace{1.0em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}} ^3。我们的结果将Deng等人的结果从超立方情况扩展{到}渐近立方情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Nonlinear Analysis
Advances in Nonlinear Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
6.00
自引率
9.50%
发文量
60
审稿时长
30 weeks
期刊介绍: Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信