{"title":"无AR条件的超线性分数阶拉普拉斯方程的多个非平凡解","authors":"Leiga Zhao, Hongrui Cai, Yutong Chen","doi":"10.1515/anona-2022-0281","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we study a class of nonlinear fractional Laplace problems with a parameter and superlinear nonlinearity ( − Δ ) s u = λ u + f ( x , u ) , in Ω , u = 0 , in R N \\ Ω . \\left\\{\\phantom{\\rule[-1.25em]{}{0ex}}\\begin{array}{ll}{\\left(-\\Delta )}^{s}u=\\lambda u+f\\left(x,u),\\hspace{1.0em}& \\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}\\Omega ,\\\\ u=0,\\hspace{1.0em}& \\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{{\\mathbb{R}}}^{N}\\backslash \\Omega \\right.\\end{array}\\right. Multiplicity of nontrivial solutions is obtained when the parameter is near the eigenvalue of the fractional Laplace operator without Ambrosetti and Rabinowitz condition for the nonlinearity. Our methods are the combination of minimax method, bifurcation theory, and Morse theory.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple nontrivial solutions of superlinear fractional Laplace equations without (AR) condition\",\"authors\":\"Leiga Zhao, Hongrui Cai, Yutong Chen\",\"doi\":\"10.1515/anona-2022-0281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we study a class of nonlinear fractional Laplace problems with a parameter and superlinear nonlinearity ( − Δ ) s u = λ u + f ( x , u ) , in Ω , u = 0 , in R N \\\\ Ω . \\\\left\\\\{\\\\phantom{\\\\rule[-1.25em]{}{0ex}}\\\\begin{array}{ll}{\\\\left(-\\\\Delta )}^{s}u=\\\\lambda u+f\\\\left(x,u),\\\\hspace{1.0em}& \\\\hspace{0.1em}\\\\text{in}\\\\hspace{0.1em}\\\\hspace{0.33em}\\\\Omega ,\\\\\\\\ u=0,\\\\hspace{1.0em}& \\\\hspace{0.1em}\\\\text{in}\\\\hspace{0.1em}\\\\hspace{0.33em}{{\\\\mathbb{R}}}^{N}\\\\backslash \\\\Omega \\\\right.\\\\end{array}\\\\right. Multiplicity of nontrivial solutions is obtained when the parameter is near the eigenvalue of the fractional Laplace operator without Ambrosetti and Rabinowitz condition for the nonlinearity. Our methods are the combination of minimax method, bifurcation theory, and Morse theory.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0281\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0281","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Multiple nontrivial solutions of superlinear fractional Laplace equations without (AR) condition
Abstract In this article, we study a class of nonlinear fractional Laplace problems with a parameter and superlinear nonlinearity ( − Δ ) s u = λ u + f ( x , u ) , in Ω , u = 0 , in R N \ Ω . \left\{\phantom{\rule[-1.25em]{}{0ex}}\begin{array}{ll}{\left(-\Delta )}^{s}u=\lambda u+f\left(x,u),\hspace{1.0em}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,\\ u=0,\hspace{1.0em}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N}\backslash \Omega \right.\end{array}\right. Multiplicity of nontrivial solutions is obtained when the parameter is near the eigenvalue of the fractional Laplace operator without Ambrosetti and Rabinowitz condition for the nonlinearity. Our methods are the combination of minimax method, bifurcation theory, and Morse theory.