{"title":"无AR条件的超线性分数阶拉普拉斯方程的多个非平凡解","authors":"Leiga Zhao, Hongrui Cai, Yutong Chen","doi":"10.1515/anona-2022-0281","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we study a class of nonlinear fractional Laplace problems with a parameter and superlinear nonlinearity ( − Δ ) s u = λ u + f ( x , u ) , in Ω , u = 0 , in R N \\ Ω . \\left\\{\\phantom{\\rule[-1.25em]{}{0ex}}\\begin{array}{ll}{\\left(-\\Delta )}^{s}u=\\lambda u+f\\left(x,u),\\hspace{1.0em}& \\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}\\Omega ,\\\\ u=0,\\hspace{1.0em}& \\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{{\\mathbb{R}}}^{N}\\backslash \\Omega \\right.\\end{array}\\right. Multiplicity of nontrivial solutions is obtained when the parameter is near the eigenvalue of the fractional Laplace operator without Ambrosetti and Rabinowitz condition for the nonlinearity. Our methods are the combination of minimax method, bifurcation theory, and Morse theory.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple nontrivial solutions of superlinear fractional Laplace equations without (AR) condition\",\"authors\":\"Leiga Zhao, Hongrui Cai, Yutong Chen\",\"doi\":\"10.1515/anona-2022-0281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we study a class of nonlinear fractional Laplace problems with a parameter and superlinear nonlinearity ( − Δ ) s u = λ u + f ( x , u ) , in Ω , u = 0 , in R N \\\\ Ω . \\\\left\\\\{\\\\phantom{\\\\rule[-1.25em]{}{0ex}}\\\\begin{array}{ll}{\\\\left(-\\\\Delta )}^{s}u=\\\\lambda u+f\\\\left(x,u),\\\\hspace{1.0em}& \\\\hspace{0.1em}\\\\text{in}\\\\hspace{0.1em}\\\\hspace{0.33em}\\\\Omega ,\\\\\\\\ u=0,\\\\hspace{1.0em}& \\\\hspace{0.1em}\\\\text{in}\\\\hspace{0.1em}\\\\hspace{0.33em}{{\\\\mathbb{R}}}^{N}\\\\backslash \\\\Omega \\\\right.\\\\end{array}\\\\right. Multiplicity of nontrivial solutions is obtained when the parameter is near the eigenvalue of the fractional Laplace operator without Ambrosetti and Rabinowitz condition for the nonlinearity. Our methods are the combination of minimax method, bifurcation theory, and Morse theory.\",\"PeriodicalId\":51301,\"journal\":{\"name\":\"Advances in Nonlinear Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0281\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0281","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Multiple nontrivial solutions of superlinear fractional Laplace equations without (AR) condition
Abstract In this article, we study a class of nonlinear fractional Laplace problems with a parameter and superlinear nonlinearity ( − Δ ) s u = λ u + f ( x , u ) , in Ω , u = 0 , in R N \ Ω . \left\{\phantom{\rule[-1.25em]{}{0ex}}\begin{array}{ll}{\left(-\Delta )}^{s}u=\lambda u+f\left(x,u),\hspace{1.0em}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,\\ u=0,\hspace{1.0em}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N}\backslash \Omega \right.\end{array}\right. Multiplicity of nontrivial solutions is obtained when the parameter is near the eigenvalue of the fractional Laplace operator without Ambrosetti and Rabinowitz condition for the nonlinearity. Our methods are the combination of minimax method, bifurcation theory, and Morse theory.
期刊介绍:
Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.