无AR条件的超线性分数阶拉普拉斯方程的多个非平凡解

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Leiga Zhao, Hongrui Cai, Yutong Chen
{"title":"无AR条件的超线性分数阶拉普拉斯方程的多个非平凡解","authors":"Leiga Zhao, Hongrui Cai, Yutong Chen","doi":"10.1515/anona-2022-0281","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we study a class of nonlinear fractional Laplace problems with a parameter and superlinear nonlinearity ( − Δ ) s u = λ u + f ( x , u ) , in Ω , u = 0 , in R N \\ Ω . \\left\\{\\phantom{\\rule[-1.25em]{}{0ex}}\\begin{array}{ll}{\\left(-\\Delta )}^{s}u=\\lambda u+f\\left(x,u),\\hspace{1.0em}& \\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}\\Omega ,\\\\ u=0,\\hspace{1.0em}& \\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{{\\mathbb{R}}}^{N}\\backslash \\Omega \\right.\\end{array}\\right. Multiplicity of nontrivial solutions is obtained when the parameter is near the eigenvalue of the fractional Laplace operator without Ambrosetti and Rabinowitz condition for the nonlinearity. Our methods are the combination of minimax method, bifurcation theory, and Morse theory.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple nontrivial solutions of superlinear fractional Laplace equations without (AR) condition\",\"authors\":\"Leiga Zhao, Hongrui Cai, Yutong Chen\",\"doi\":\"10.1515/anona-2022-0281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we study a class of nonlinear fractional Laplace problems with a parameter and superlinear nonlinearity ( − Δ ) s u = λ u + f ( x , u ) , in Ω , u = 0 , in R N \\\\ Ω . \\\\left\\\\{\\\\phantom{\\\\rule[-1.25em]{}{0ex}}\\\\begin{array}{ll}{\\\\left(-\\\\Delta )}^{s}u=\\\\lambda u+f\\\\left(x,u),\\\\hspace{1.0em}& \\\\hspace{0.1em}\\\\text{in}\\\\hspace{0.1em}\\\\hspace{0.33em}\\\\Omega ,\\\\\\\\ u=0,\\\\hspace{1.0em}& \\\\hspace{0.1em}\\\\text{in}\\\\hspace{0.1em}\\\\hspace{0.33em}{{\\\\mathbb{R}}}^{N}\\\\backslash \\\\Omega \\\\right.\\\\end{array}\\\\right. Multiplicity of nontrivial solutions is obtained when the parameter is near the eigenvalue of the fractional Laplace operator without Ambrosetti and Rabinowitz condition for the nonlinearity. Our methods are the combination of minimax method, bifurcation theory, and Morse theory.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0281\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0281","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了一类带参数的非线性分式拉普拉斯问题和超线性非线性(−Δ)su=λu+f(x,u),单位为Ω,u=0,单位为Rn\Ω。\left{\phantom{\rule[-1.25em]{}{0ex}}\ begin{array}^{s}u=\lambda u+f\left(x,u),\hspace{1.0em}&\ hspace{0.1em}\text{in}\hspace{0.13em}\Omega,\\u=0,\hspace{1.0em}&\ hspace{0.1em}\text{s in}\ hspace{0.1em}\hspace{0.33em}{\mathbb{R}}}^{N}\反斜杠\Omega\right。\end{array}\ right。在没有Ambrosetti和Rabinowitz非线性条件的情况下,当参数接近分数拉普拉斯算子的特征值时,得到了非平凡解的多重性。我们的方法是结合了极大极小方法,分岔理论和莫尔斯理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple nontrivial solutions of superlinear fractional Laplace equations without (AR) condition
Abstract In this article, we study a class of nonlinear fractional Laplace problems with a parameter and superlinear nonlinearity ( − Δ ) s u = λ u + f ( x , u ) , in Ω , u = 0 , in R N \ Ω . \left\{\phantom{\rule[-1.25em]{}{0ex}}\begin{array}{ll}{\left(-\Delta )}^{s}u=\lambda u+f\left(x,u),\hspace{1.0em}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,\\ u=0,\hspace{1.0em}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N}\backslash \Omega \right.\end{array}\right. Multiplicity of nontrivial solutions is obtained when the parameter is near the eigenvalue of the fractional Laplace operator without Ambrosetti and Rabinowitz condition for the nonlinearity. Our methods are the combination of minimax method, bifurcation theory, and Morse theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信