Existence of solutions for a double-phase variable exponent equation without the Ambrosetti-Rabinowitz condition

IF 3.2 1区 数学 Q1 MATHEMATICS
Jingjing Liu, P. Pucci
{"title":"Existence of solutions for a double-phase variable exponent equation without the Ambrosetti-Rabinowitz condition","authors":"Jingjing Liu, P. Pucci","doi":"10.1515/anona-2022-0292","DOIUrl":null,"url":null,"abstract":"Abstract The article deals with the existence of a pair of nontrivial nonnegative and nonpositive solutions for a nonlinear weighted quasilinear equation in R N {{\\mathbb{R}}}^{N} , which involves a double-phase general variable exponent elliptic operator A {\\bf{A}} . More precisely, A {\\bf{A}} has behaviors like ∣ ξ ∣ q ( x ) − 2 ξ {| \\xi | }^{q\\left(x)-2}\\xi if ∣ ξ ∣ | \\xi | is small and like ∣ ξ ∣ p ( x ) − 2 ξ {| \\xi | }^{p\\left(x)-2}\\xi if ∣ ξ ∣ | \\xi | is large. Existence is proved by the Cerami condition instead of the classical Palais-Smale condition, so that the nonlinear term f ( x , u ) f\\left(x,u) does not necessarily have to satisfy the Ambrosetti-Rabinowitz condition.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0292","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract The article deals with the existence of a pair of nontrivial nonnegative and nonpositive solutions for a nonlinear weighted quasilinear equation in R N {{\mathbb{R}}}^{N} , which involves a double-phase general variable exponent elliptic operator A {\bf{A}} . More precisely, A {\bf{A}} has behaviors like ∣ ξ ∣ q ( x ) − 2 ξ {| \xi | }^{q\left(x)-2}\xi if ∣ ξ ∣ | \xi | is small and like ∣ ξ ∣ p ( x ) − 2 ξ {| \xi | }^{p\left(x)-2}\xi if ∣ ξ ∣ | \xi | is large. Existence is proved by the Cerami condition instead of the classical Palais-Smale condition, so that the nonlinear term f ( x , u ) f\left(x,u) does not necessarily have to satisfy the Ambrosetti-Rabinowitz condition.
不含Ambrosetti-Rabinowitz条件的双相变指数方程解的存在性
摘要本文讨论了R N{\mathbb{R}}^{N}中一个非线性加权拟线性方程的一对非平凡非负和非正解的存在性,该方程涉及一个双相广义变指数椭圆算子a{\bf{a}。更准确地说,A{\bf{A}}具有类似于如果Şξ|\nenenebc xi |很小则Şξ。用Cerami条件而不是经典的Palais-Smale条件证明了存在性,使得非线性项f(x,u)f\left(x,u)不一定满足Ambrosetti-Rabinowitz条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Nonlinear Analysis
Advances in Nonlinear Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
6.00
自引率
9.50%
发文量
60
审稿时长
30 weeks
期刊介绍: Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信