{"title":"库仑-索博列夫临界指数Schrödinger-Poisson-Slater方程的基态","authors":"Chun-Yu Lei, Jun Lei, H. Suo","doi":"10.1515/anona-2022-0299","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we study the existence of ground state solutions for the Schrödinger-Poisson-Slater type equation with the Coulomb-Sobolev critical growth: − Δ u + 1 4 π ∣ x ∣ ∗ ∣ u ∣ 2 u = ∣ u ∣ u + μ ∣ u ∣ p − 2 u , in R 3 , -\\Delta u+\\left(\\frac{1}{4\\pi | x| }\\ast | u{| }^{2}\\right)u=| u| u+\\mu | u{| }^{p-2}u,\\hspace{1.0em}{\\rm{in}}\\hspace{0.33em}{{\\mathbb{R}}}^{3}, where μ > 0 \\mu \\gt 0 and 3 < p < 6 3\\lt p\\lt 6 . With the help of the Nehari-Pohozaev method, we obtain a ground-state solution for the above equation by employing compactness arguments.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Groundstate for the Schrödinger-Poisson-Slater equation involving the Coulomb-Sobolev critical exponent\",\"authors\":\"Chun-Yu Lei, Jun Lei, H. Suo\",\"doi\":\"10.1515/anona-2022-0299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we study the existence of ground state solutions for the Schrödinger-Poisson-Slater type equation with the Coulomb-Sobolev critical growth: − Δ u + 1 4 π ∣ x ∣ ∗ ∣ u ∣ 2 u = ∣ u ∣ u + μ ∣ u ∣ p − 2 u , in R 3 , -\\\\Delta u+\\\\left(\\\\frac{1}{4\\\\pi | x| }\\\\ast | u{| }^{2}\\\\right)u=| u| u+\\\\mu | u{| }^{p-2}u,\\\\hspace{1.0em}{\\\\rm{in}}\\\\hspace{0.33em}{{\\\\mathbb{R}}}^{3}, where μ > 0 \\\\mu \\\\gt 0 and 3 < p < 6 3\\\\lt p\\\\lt 6 . With the help of the Nehari-Pohozaev method, we obtain a ground-state solution for the above equation by employing compactness arguments.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0299\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0299","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Groundstate for the Schrödinger-Poisson-Slater equation involving the Coulomb-Sobolev critical exponent
Abstract In this article, we study the existence of ground state solutions for the Schrödinger-Poisson-Slater type equation with the Coulomb-Sobolev critical growth: − Δ u + 1 4 π ∣ x ∣ ∗ ∣ u ∣ 2 u = ∣ u ∣ u + μ ∣ u ∣ p − 2 u , in R 3 , -\Delta u+\left(\frac{1}{4\pi | x| }\ast | u{| }^{2}\right)u=| u| u+\mu | u{| }^{p-2}u,\hspace{1.0em}{\rm{in}}\hspace{0.33em}{{\mathbb{R}}}^{3}, where μ > 0 \mu \gt 0 and 3 < p < 6 3\lt p\lt 6 . With the help of the Nehari-Pohozaev method, we obtain a ground-state solution for the above equation by employing compactness arguments.