{"title":"Groundstate for the Schrödinger-Poisson-Slater equation involving the Coulomb-Sobolev critical exponent","authors":"Chun-Yu Lei, Jun Lei, H. Suo","doi":"10.1515/anona-2022-0299","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we study the existence of ground state solutions for the Schrödinger-Poisson-Slater type equation with the Coulomb-Sobolev critical growth: − Δ u + 1 4 π ∣ x ∣ ∗ ∣ u ∣ 2 u = ∣ u ∣ u + μ ∣ u ∣ p − 2 u , in R 3 , -\\Delta u+\\left(\\frac{1}{4\\pi | x| }\\ast | u{| }^{2}\\right)u=| u| u+\\mu | u{| }^{p-2}u,\\hspace{1.0em}{\\rm{in}}\\hspace{0.33em}{{\\mathbb{R}}}^{3}, where μ > 0 \\mu \\gt 0 and 3 < p < 6 3\\lt p\\lt 6 . With the help of the Nehari-Pohozaev method, we obtain a ground-state solution for the above equation by employing compactness arguments.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0299","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this article, we study the existence of ground state solutions for the Schrödinger-Poisson-Slater type equation with the Coulomb-Sobolev critical growth: − Δ u + 1 4 π ∣ x ∣ ∗ ∣ u ∣ 2 u = ∣ u ∣ u + μ ∣ u ∣ p − 2 u , in R 3 , -\Delta u+\left(\frac{1}{4\pi | x| }\ast | u{| }^{2}\right)u=| u| u+\mu | u{| }^{p-2}u,\hspace{1.0em}{\rm{in}}\hspace{0.33em}{{\mathbb{R}}}^{3}, where μ > 0 \mu \gt 0 and 3 < p < 6 3\lt p\lt 6 . With the help of the Nehari-Pohozaev method, we obtain a ground-state solution for the above equation by employing compactness arguments.