{"title":"Groundstate for the Schrödinger-Poisson-Slater equation involving the Coulomb-Sobolev critical exponent","authors":"Chun-Yu Lei, Jun Lei, H. Suo","doi":"10.1515/anona-2022-0299","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we study the existence of ground state solutions for the Schrödinger-Poisson-Slater type equation with the Coulomb-Sobolev critical growth: − Δ u + 1 4 π ∣ x ∣ ∗ ∣ u ∣ 2 u = ∣ u ∣ u + μ ∣ u ∣ p − 2 u , in R 3 , -\\Delta u+\\left(\\frac{1}{4\\pi | x| }\\ast | u{| }^{2}\\right)u=| u| u+\\mu | u{| }^{p-2}u,\\hspace{1.0em}{\\rm{in}}\\hspace{0.33em}{{\\mathbb{R}}}^{3}, where μ > 0 \\mu \\gt 0 and 3 < p < 6 3\\lt p\\lt 6 . With the help of the Nehari-Pohozaev method, we obtain a ground-state solution for the above equation by employing compactness arguments.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0299","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this article, we study the existence of ground state solutions for the Schrödinger-Poisson-Slater type equation with the Coulomb-Sobolev critical growth: − Δ u + 1 4 π ∣ x ∣ ∗ ∣ u ∣ 2 u = ∣ u ∣ u + μ ∣ u ∣ p − 2 u , in R 3 , -\Delta u+\left(\frac{1}{4\pi | x| }\ast | u{| }^{2}\right)u=| u| u+\mu | u{| }^{p-2}u,\hspace{1.0em}{\rm{in}}\hspace{0.33em}{{\mathbb{R}}}^{3}, where μ > 0 \mu \gt 0 and 3 < p < 6 3\lt p\lt 6 . With the help of the Nehari-Pohozaev method, we obtain a ground-state solution for the above equation by employing compactness arguments.
期刊介绍:
Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.