具有加性噪声的时滞随机微分方程中心流形的逼近

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Longyu Wu, Jiaxin Gong, Juan Yang, J. Shu
{"title":"具有加性噪声的时滞随机微分方程中心流形的逼近","authors":"Longyu Wu, Jiaxin Gong, Juan Yang, J. Shu","doi":"10.1515/anona-2022-0301","DOIUrl":null,"url":null,"abstract":"Abstract This article deals with approximations of center manifolds for delay stochastic differential equations with additive noise. We first prove the existence and smoothness of random center manifolds for these approximation equations. Then we show that the C k {C}^{k} invariant center manifolds of the system with colored noise approximate that of the original system.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximations of center manifolds for delay stochastic differential equations with additive noise\",\"authors\":\"Longyu Wu, Jiaxin Gong, Juan Yang, J. Shu\",\"doi\":\"10.1515/anona-2022-0301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article deals with approximations of center manifolds for delay stochastic differential equations with additive noise. We first prove the existence and smoothness of random center manifolds for these approximation equations. Then we show that the C k {C}^{k} invariant center manifolds of the system with colored noise approximate that of the original system.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0301\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0301","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有加性噪声的时滞随机微分方程中心流形的逼近问题。首先证明了这些近似方程的随机中心流形的存在性和光滑性。然后我们证明了带有彩色噪声的系统的ck {C}^{k}不变中心流形近似于原系统的中心流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximations of center manifolds for delay stochastic differential equations with additive noise
Abstract This article deals with approximations of center manifolds for delay stochastic differential equations with additive noise. We first prove the existence and smoothness of random center manifolds for these approximation equations. Then we show that the C k {C}^{k} invariant center manifolds of the system with colored noise approximate that of the original system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信