{"title":"具有加性噪声的时滞随机微分方程中心流形的逼近","authors":"Longyu Wu, Jiaxin Gong, Juan Yang, J. Shu","doi":"10.1515/anona-2022-0301","DOIUrl":null,"url":null,"abstract":"Abstract This article deals with approximations of center manifolds for delay stochastic differential equations with additive noise. We first prove the existence and smoothness of random center manifolds for these approximation equations. Then we show that the C k {C}^{k} invariant center manifolds of the system with colored noise approximate that of the original system.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximations of center manifolds for delay stochastic differential equations with additive noise\",\"authors\":\"Longyu Wu, Jiaxin Gong, Juan Yang, J. Shu\",\"doi\":\"10.1515/anona-2022-0301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article deals with approximations of center manifolds for delay stochastic differential equations with additive noise. We first prove the existence and smoothness of random center manifolds for these approximation equations. Then we show that the C k {C}^{k} invariant center manifolds of the system with colored noise approximate that of the original system.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0301\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0301","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Approximations of center manifolds for delay stochastic differential equations with additive noise
Abstract This article deals with approximations of center manifolds for delay stochastic differential equations with additive noise. We first prove the existence and smoothness of random center manifolds for these approximation equations. Then we show that the C k {C}^{k} invariant center manifolds of the system with colored noise approximate that of the original system.