{"title":"Approximations of center manifolds for delay stochastic differential equations with additive noise","authors":"Longyu Wu, Jiaxin Gong, Juan Yang, J. Shu","doi":"10.1515/anona-2022-0301","DOIUrl":null,"url":null,"abstract":"Abstract This article deals with approximations of center manifolds for delay stochastic differential equations with additive noise. We first prove the existence and smoothness of random center manifolds for these approximation equations. Then we show that the C k {C}^{k} invariant center manifolds of the system with colored noise approximate that of the original system.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0301","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This article deals with approximations of center manifolds for delay stochastic differential equations with additive noise. We first prove the existence and smoothness of random center manifolds for these approximation equations. Then we show that the C k {C}^{k} invariant center manifolds of the system with colored noise approximate that of the original system.
期刊介绍:
Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.