{"title":"Multiple nontrivial solutions of superlinear fractional Laplace equations without (AR) condition","authors":"Leiga Zhao, Hongrui Cai, Yutong Chen","doi":"10.1515/anona-2022-0281","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we study a class of nonlinear fractional Laplace problems with a parameter and superlinear nonlinearity ( − Δ ) s u = λ u + f ( x , u ) , in Ω , u = 0 , in R N \\ Ω . \\left\\{\\phantom{\\rule[-1.25em]{}{0ex}}\\begin{array}{ll}{\\left(-\\Delta )}^{s}u=\\lambda u+f\\left(x,u),\\hspace{1.0em}& \\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}\\Omega ,\\\\ u=0,\\hspace{1.0em}& \\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{{\\mathbb{R}}}^{N}\\backslash \\Omega \\right.\\end{array}\\right. Multiplicity of nontrivial solutions is obtained when the parameter is near the eigenvalue of the fractional Laplace operator without Ambrosetti and Rabinowitz condition for the nonlinearity. Our methods are the combination of minimax method, bifurcation theory, and Morse theory.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0281","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this article, we study a class of nonlinear fractional Laplace problems with a parameter and superlinear nonlinearity ( − Δ ) s u = λ u + f ( x , u ) , in Ω , u = 0 , in R N \ Ω . \left\{\phantom{\rule[-1.25em]{}{0ex}}\begin{array}{ll}{\left(-\Delta )}^{s}u=\lambda u+f\left(x,u),\hspace{1.0em}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,\\ u=0,\hspace{1.0em}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N}\backslash \Omega \right.\end{array}\right. Multiplicity of nontrivial solutions is obtained when the parameter is near the eigenvalue of the fractional Laplace operator without Ambrosetti and Rabinowitz condition for the nonlinearity. Our methods are the combination of minimax method, bifurcation theory, and Morse theory.