{"title":"Galilean symmetry of the KdV hierarchy","authors":"Jianghao Xu, Di Yang","doi":"10.1112/jlms.70075","DOIUrl":"https://doi.org/10.1112/jlms.70075","url":null,"abstract":"<p>By solving the infinitesimal Galilean symmetry for the Korteweg–de Vries (KdV) hierarchy, we obtain an explicit expression for the corresponding one-parameter Lie group, which we call the <i>Galilean symmetry</i> of the KdV hierarchy. As an application, we establish an explicit relationship between the <i>non-abelian Born–Infeld partition function</i> and the <i>generalized Brézin–Gross–Witten partition function</i>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 2","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Discrete quantum subgroups of free unitary quantum groups","authors":"Amaury Freslon, Moritz Weber","doi":"10.1112/jlms.70070","DOIUrl":"https://doi.org/10.1112/jlms.70070","url":null,"abstract":"<p>We classify all compact quantum groups whose C*-algebra sits inside that of the free unitary quantum groups <span></span><math>\u0000 <semantics>\u0000 <msubsup>\u0000 <mi>U</mi>\u0000 <mi>N</mi>\u0000 <mo>+</mo>\u0000 </msubsup>\u0000 <annotation>$U_{N}^{+}$</annotation>\u0000 </semantics></math>. In other words, we classify all discrete quantum subgroups of <span></span><math>\u0000 <semantics>\u0000 <msubsup>\u0000 <mover>\u0000 <mi>U</mi>\u0000 <mo>̂</mo>\u0000 </mover>\u0000 <mi>N</mi>\u0000 <mo>+</mo>\u0000 </msubsup>\u0000 <annotation>$widehat{U}_{N}^{+}$</annotation>\u0000 </semantics></math>, thereby proving a quantum variant of Kurosh's theorem to some extent. This yields interesting families which can be described using free wreath products and free complexifications. They can also be seen as quantum automorphism groups of specific quantum graphs which generalize finite rooted regular trees, providing explicit examples of quantum trees.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 2","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143120186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The category of a partitioned fan","authors":"Maximilian Kaipel","doi":"10.1112/jlms.70071","DOIUrl":"https://doi.org/10.1112/jlms.70071","url":null,"abstract":"<p>In this paper the notion of an <i>admissible partition</i> of a simplicial polyhedral fan is introduced and the <i>category of a partitioned fan</i> is defined as a generalisation of the <span></span><math>\u0000 <semantics>\u0000 <mi>τ</mi>\u0000 <annotation>$tau$</annotation>\u0000 </semantics></math>-cluster morphism category of a finite-dimensional algebra. This establishes a complete lattice of categories around the <span></span><math>\u0000 <semantics>\u0000 <mi>τ</mi>\u0000 <annotation>$tau$</annotation>\u0000 </semantics></math>-cluster morphism category, which is closely tied to the fan structure. We prove that the classifying spaces of these categories are cube complexes, which reduces the process of determining if they are <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>K</mi>\u0000 <mo>(</mo>\u0000 <mi>π</mi>\u0000 <mo>,</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$K(pi,1)$</annotation>\u0000 </semantics></math> spaces to three sufficient conditions. We characterise when these conditions are satisfied for fans in <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <annotation>$mathbb {R}^2$</annotation>\u0000 </semantics></math> and prove that the first one, the existence of a certain faithful functor, is satisfied for hyperplane arrangements whose normal vectors lie in the positive orthant. As a consequence, we obtain a new infinite class of algebras for which the <span></span><math>\u0000 <semantics>\u0000 <mi>τ</mi>\u0000 <annotation>$tau$</annotation>\u0000 </semantics></math>-cluster morphism category admits a faithful functor and for which the cube complexes are <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>K</mi>\u0000 <mo>(</mo>\u0000 <mi>π</mi>\u0000 <mo>,</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$K(pi,1)$</annotation>\u0000 </semantics></math> spaces. In the final section, we also offer a new algebraic proof of the relationship between an algebra and its <span></span><math>\u0000 <semantics>\u0000 <mi>g</mi>\u0000 <annotation>$g$</annotation>\u0000 </semantics></math>-vector fan.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 2","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70071","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143119859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mean-field limit of 2D stationary particle systems with signed Coulombian interactions","authors":"Jan Peszek, Rémy Rodiac","doi":"10.1112/jlms.70068","DOIUrl":"https://doi.org/10.1112/jlms.70068","url":null,"abstract":"<p>We study the mean-field limits of critical points of interaction energies with Coulombian singularity. An important feature of our setting is that we allow interaction between particles of opposite signs. Particles of opposite signs attract each other whereas particles of the same signs repel each other. In two dimensional, we prove that the associated empirical measures converge to a limiting measure <span></span><math>\u0000 <semantics>\u0000 <mi>μ</mi>\u0000 <annotation>$mu$</annotation>\u0000 </semantics></math> that satisfies a two-fold criticality condition: in velocity form or in vorticity form. Our setting includes the stationary attraction–repulsion problem with Coulombian singularity and the stationary system of point vortices in fluid mechanics. In this last context, in the case where the limiting measure is in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>H</mi>\u0000 <mtext>loc</mtext>\u0000 <mrow>\u0000 <mo>−</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msubsup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$H^{-1}_{text{loc}}(mathbb {R}^2)$</annotation>\u0000 </semantics></math>, we recover the classical criticality condition stating that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mo>∇</mo>\u0000 <mo>⊥</mo>\u0000 </msup>\u0000 <mi>g</mi>\u0000 <mo>*</mo>\u0000 <mi>μ</mi>\u0000 </mrow>\u0000 <annotation>$nabla ^perp g ast mu$</annotation>\u0000 </semantics></math>, with <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>g</mi>\u0000 <mo>(</mo>\u0000 <mi>x</mi>\u0000 <mo>)</mo>\u0000 <mo>=</mo>\u0000 <mo>−</mo>\u0000 <mi>log</mi>\u0000 <mo>|</mo>\u0000 <mi>x</mi>\u0000 <mo>|</mo>\u0000 </mrow>\u0000 <annotation>$g(x)=-log |x|$</annotation>\u0000 </semantics></math>, is a stationary solution of the incompressible Euler equation. This result, is, to the best of our knowledge, new in the case of particles with different signs (for particles of the positive sign, it was obtained by Schochet in 1996). In order to derive the limiting criticality condition in the velocity form, we follow an approach devised by Sandier–Serfaty in the context of Ginzburg–Landau vortices. This consists of passing to the limit in the stress-energy tensor associated with the velocity field. On the oth","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143114067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rational approximation of holomorphic semigroups revisited","authors":"Charles Batty, Alexander Gomilko, Yuri Tomilov","doi":"10.1112/jlms.70066","DOIUrl":"https://doi.org/10.1112/jlms.70066","url":null,"abstract":"<p>Using a recently developed <span></span><math>\u0000 <semantics>\u0000 <mi>H</mi>\u0000 <annotation>$mathcal {H}$</annotation>\u0000 </semantics></math>-calculus we propose a unified approach to the study of rational approximations of holomorphic semigroups on Banach spaces. We provide unified and simple proofs to a number of basic results on semigroup approximations and substantially improve some of them. We show that many of our estimates are essentially optimal, thus complementing the existing literature.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143114066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gregory Berkolaiko, Yaiza Canzani, Graham Cox, Jeremy L. Marzuola
{"title":"Homology of spectral minimal partitions","authors":"Gregory Berkolaiko, Yaiza Canzani, Graham Cox, Jeremy L. Marzuola","doi":"10.1112/jlms.70065","DOIUrl":"https://doi.org/10.1112/jlms.70065","url":null,"abstract":"<p>A spectral minimal partition of a manifold is its decomposition into disjoint open sets that minimizes a spectral energy functional. It is known that bipartite spectral minimal partitions coincide with nodal partitions of Courant-sharp Laplacian eigenfunctions. However, almost all minimal partitions are non-bipartite. To study those, we define a modified Laplacian operator and prove that the nodal partitions of its Courant-sharp eigenfunctions are minimal within a certain topological class of partitions. This yields new results in the non-bipartite case and recovers the above known result in the bipartite case. Our approach is based on tools from algebraic topology, which we illustrate by a number of examples where the topological types of partitions are characterized by relative homology.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the long-time behavior of solutions to the Navier–Stokes–Fourier system on unbounded domains","authors":"Elisabetta Chiodaroli, Eduard Feireisl","doi":"10.1112/jlms.70067","DOIUrl":"https://doi.org/10.1112/jlms.70067","url":null,"abstract":"<p>We consider the Navier–Stokes–Fourier (NSF) system on an unbounded domain in the Euclidean space <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mn>3</mn>\u0000 </msup>\u0000 <annotation>$R^3$</annotation>\u0000 </semantics></math>, supplemented by the far-field conditions for the phase variables, specifically: <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>ϱ</mi>\u0000 <mo>→</mo>\u0000 <mn>0</mn>\u0000 <mo>,</mo>\u0000 <mspace></mspace>\u0000 <mi>ϑ</mi>\u0000 <mo>→</mo>\u0000 <msub>\u0000 <mi>ϑ</mi>\u0000 <mi>∞</mi>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <mspace></mspace>\u0000 <mi>u</mi>\u0000 <mo>→</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$varrho rightarrow 0, vartheta rightarrow vartheta _infty, {bm u}rightarrow 0$</annotation>\u0000 </semantics></math> as <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mspace></mspace>\u0000 <mo>|</mo>\u0000 <mi>x</mi>\u0000 <mo>|</mo>\u0000 <mo>→</mo>\u0000 <mi>∞</mi>\u0000 </mrow>\u0000 <annotation>$ |x| rightarrow infty$</annotation>\u0000 </semantics></math>. We study the long-time behavior of solutions and we prove that any global-in-time weak solution to the NSF system approaches the equilibrium <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>ϱ</mi>\u0000 <mi>s</mi>\u0000 </msub>\u0000 <mo>=</mo>\u0000 <mn>0</mn>\u0000 <mo>,</mo>\u0000 <mspace></mspace>\u0000 <msub>\u0000 <mi>ϑ</mi>\u0000 <mi>s</mi>\u0000 </msub>\u0000 <mo>=</mo>\u0000 <msub>\u0000 <mi>ϑ</mi>\u0000 <mi>∞</mi>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <mspace></mspace>\u0000 <msub>\u0000 <mi>u</mi>\u0000 <mi>s</mi>\u0000 </msub>\u0000 <mo>=</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$varrho _s = 0, vartheta _s = vartheta _infty, {bm u}_s = 0$</annotation>\u0000 </semantics></math> in the sense of ergodic averages for time tending to infinity. As a consequence of the convergence result combined with the total mass conservation, we can show that the total momentum of global-in-time weak solutions is never globally conserved.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143111977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Robert M. Guralnick, Hung P. Tong-Viet, Gareth Tracey
{"title":"Weakly subnormal subgroups and variations of the Baer–Suzuki theorem","authors":"Robert M. Guralnick, Hung P. Tong-Viet, Gareth Tracey","doi":"10.1112/jlms.70057","DOIUrl":"https://doi.org/10.1112/jlms.70057","url":null,"abstract":"<p>A subgroup <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$R$</annotation>\u0000 </semantics></math> of a finite group <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math> is weakly subnormal in <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math> if <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$R$</annotation>\u0000 </semantics></math> is not subnormal in <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math> but it is subnormal in every proper overgroup of <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$R$</annotation>\u0000 </semantics></math> in <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>. In this paper, we first classify all finite groups <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math> that contains a weakly subnormal <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-subgroup for some prime <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>. We then determine all finite groups containing a cyclic weakly subnormal <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-subgroup. As applications, we prove a number of variations of the Baer–Suzuki theorem using the orders of certain group elements.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70057","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143110960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A quantitative version of Northcott's theorem on points of bounded height: The function field case","authors":"Jeffrey Lin Thunder","doi":"10.1112/jlms.70059","DOIUrl":"https://doi.org/10.1112/jlms.70059","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mi>K</mi>\u0000 <annotation>$K$</annotation>\u0000 </semantics></math> be a finite algebraic extension of the field of rational functions in one indeterminate over a finite field and let <span></span><math>\u0000 <semantics>\u0000 <mover>\u0000 <mi>K</mi>\u0000 <mo>¯</mo>\u0000 </mover>\u0000 <annotation>$overline{K}$</annotation>\u0000 </semantics></math> denote an algebraic closure of <span></span><math>\u0000 <semantics>\u0000 <mi>K</mi>\u0000 <annotation>$K$</annotation>\u0000 </semantics></math>. For given integers <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 <mo>⩾</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$mgeqslant 0$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>⩾</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$ngeqslant 2$</annotation>\u0000 </semantics></math> we count points in projective space <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>−</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mover>\u0000 <mi>K</mi>\u0000 <mo>¯</mo>\u0000 </mover>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$mathbb {P}^{n-1}(overline{K})$</annotation>\u0000 </semantics></math> with absolute logarithmic height <span></span><math>\u0000 <semantics>\u0000 <mi>m</mi>\u0000 <annotation>$m$</annotation>\u0000 </semantics></math> and generating an extension of degree <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>></mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$d>2$</annotation>\u0000 </semantics></math> over <span></span><math>\u0000 <semantics>\u0000 <mi>K</mi>\u0000 <annotation>$K$</annotation>\u0000 </semantics></math>. Specifically, we derive an asymptotic estimate for the number of such points as <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 <mo>→</mo>\u0000 <mi>∞</mi>\u0000 </mrow>\u0000 <annotation>$mrightarrow infty$</annotation>\u0000 </semantics></math> when <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 ","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143119933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}