The second moment of the Riemann zeta function at its local extrema

IF 1.2 2区 数学 Q1 MATHEMATICS
Christopher Hughes, Solomon Lugmayer, Andrew Pearce-Crump
{"title":"The second moment of the Riemann zeta function at its local extrema","authors":"Christopher Hughes,&nbsp;Solomon Lugmayer,&nbsp;Andrew Pearce-Crump","doi":"10.1112/jlms.70250","DOIUrl":null,"url":null,"abstract":"<p>Conrey and Ghosh studied the second moment of the Riemann zeta function, evaluated at its local extrema along the critical line, finding the leading order behaviour to be <span></span><math>\n <semantics>\n <mrow>\n <mfrac>\n <mrow>\n <msup>\n <mi>e</mi>\n <mn>2</mn>\n </msup>\n <mo>−</mo>\n <mn>5</mn>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mi>π</mi>\n </mrow>\n </mfrac>\n <mi>T</mi>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>log</mi>\n <mi>T</mi>\n <mo>)</mo>\n </mrow>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\frac{e^2 - 5}{2 \\pi } T (\\log T)^2$</annotation>\n </semantics></math>. This problem is closely related to a mixed moment of the Riemann zeta function and its derivative. We present a new approach which will uncover the lower order terms for the second moment as a descending chain of powers of logarithms in the asymptotic expansion.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70250","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Conrey and Ghosh studied the second moment of the Riemann zeta function, evaluated at its local extrema along the critical line, finding the leading order behaviour to be e 2 5 2 π T ( log T ) 2 $\frac{e^2 - 5}{2 \pi } T (\log T)^2$ . This problem is closely related to a mixed moment of the Riemann zeta function and its derivative. We present a new approach which will uncover the lower order terms for the second moment as a descending chain of powers of logarithms in the asymptotic expansion.

Abstract Image

Abstract Image

黎曼函数在局部极值处的二阶矩
Conrey和Ghosh研究了Riemann zeta函数的第二矩,在其沿临界线的局部极值处求值,发现阶行为为e 2−5 2 π T (logt (2) $\frac{e^2 - 5}{2 \pi } T (\log T)^2$。这个问题与黎曼ζ函数及其导数的混合矩密切相关。我们提出了一种新的方法,它将揭示第二矩的低阶项在渐近展开中作为对数幂次的下降链。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信