Journal of the London Mathematical Society-Second Series最新文献

筛选
英文 中文
On the annihilator variety of a highest weight module for classical Lie algebras 经典李代数最高权模的湮灭子变化
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-08-04 DOI: 10.1112/jlms.70256
Zhanqiang Bai, Jia-Jun Ma, Yutong Wang
{"title":"On the annihilator variety of a highest weight module for classical Lie algebras","authors":"Zhanqiang Bai, Jia-Jun Ma, Yutong Wang","doi":"10.1112/jlms.70256","DOIUrl":"https://doi.org/10.1112/jlms.70256","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mi>g</mi>\u0000 <annotation>$mathfrak {g}$</annotation>\u0000 </semantics></math> be a classical complex simple Lie algebra, and let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>L</mi>\u0000 <mo>(</mo>\u0000 <mi>λ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$L(lambda)$</annotation>\u0000 </semantics></math> be the irreducible highest weight module of <span></span><math>\u0000 <semantics>\u0000 <mi>g</mi>\u0000 <annotation>$mathfrak {g}$</annotation>\u0000 </semantics></math> with the highest weight <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>λ</mi>\u0000 <mo>−</mo>\u0000 <mi>ρ</mi>\u0000 </mrow>\u0000 <annotation>$lambda -rho$</annotation>\u0000 </semantics></math>, where <span></span><math>\u0000 <semantics>\u0000 <mi>ρ</mi>\u0000 <annotation>$rho$</annotation>\u0000 </semantics></math> is half the sum of positive roots. The associated variety of the annihilator ideal of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>L</mi>\u0000 <mo>(</mo>\u0000 <mi>λ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$L(lambda)$</annotation>\u0000 </semantics></math> is known as the annihilator variety of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>L</mi>\u0000 <mo>(</mo>\u0000 <mi>λ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$L(lambda)$</annotation>\u0000 </semantics></math>. It is established by Joseph that the annihilator variety of a highest weight module is the Zariski closure of a nilpotent orbit in <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>g</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <annotation>$mathfrak {g}^*$</annotation>\u0000 </semantics></math>. However, describing this nilpotent orbit for a given highest weight module <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>L</mi>\u0000 <mo>(</mo>\u0000 <mi>λ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$L(lambda)$</annotation>\u0000 </semantics></math> can be quite challenging. In this paper, we present some efficient algorithms based on the Robinson–Schensted insertion algorithm to compute these orbits for classical Lie algebras. Our formulae are given by introducing two algorithms, that is, bipartition algorithm and partition algorithm. To get a special or metaplectic special partition from a domino type partition, we define the H-algorithm based on the Robinso","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144773747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
K-stable Fano threefolds of rank 2 and degree 28 2阶28度的k -稳定Fano三倍
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-08-04 DOI: 10.1112/jlms.70259
Joseph Malbon
{"title":"K-stable Fano threefolds of rank 2 and degree 28","authors":"Joseph Malbon","doi":"10.1112/jlms.70259","DOIUrl":"https://doi.org/10.1112/jlms.70259","url":null,"abstract":"<p>Moduli spaces of Fano varieties have historically been difficult to construct. However, recent work has shown that smooth K-polystable Fano varieties of fixed dimension and volume can be parametrised by a quasi-projective moduli space. In this paper, we prove that all smooth Fano threefolds with Picard rank 2 and degree 28 are K-polystable, except for some explicit cases which we describe.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70259","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144773685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arboreal Galois groups of postcritically finite quadratic polynomials: The periodic case 后临界有限二次多项式的树伽罗瓦群:周期情况
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-08-02 DOI: 10.1112/jlms.70257
Robert L. Benedetto, Dragos Ghioca, Jamie Juul, Thomas J. Tucker
{"title":"Arboreal Galois groups of postcritically finite quadratic polynomials: The periodic case","authors":"Robert L. Benedetto,&nbsp;Dragos Ghioca,&nbsp;Jamie Juul,&nbsp;Thomas J. Tucker","doi":"10.1112/jlms.70257","DOIUrl":"https://doi.org/10.1112/jlms.70257","url":null,"abstract":"<p>We provide an explicit construction of the arboreal Galois group for the postcritically finite polynomial <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>f</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>z</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>=</mo>\u0000 <msup>\u0000 <mi>z</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mo>+</mo>\u0000 <mi>c</mi>\u0000 </mrow>\u0000 <annotation>$f(z) = z^2 +c$</annotation>\u0000 </semantics></math>, where <span></span><math>\u0000 <semantics>\u0000 <mi>c</mi>\u0000 <annotation>$c$</annotation>\u0000 </semantics></math> belongs to some arbitrary field of characteristic not equal to 2. In this first of two papers, we consider the case that the critical point is periodic.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144764115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Full capacity–volumetry of sharp exp-integrability law 尖锐可积律的全容量-容量法
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-08-02 DOI: 10.1112/jlms.70255
David R. Adams, Jie Xiao
{"title":"Full capacity–volumetry of sharp exp-integrability law","authors":"David R. Adams,&nbsp;Jie Xiao","doi":"10.1112/jlms.70255","DOIUrl":"https://doi.org/10.1112/jlms.70255","url":null,"abstract":"<p>This paper uses law of trichotomy to show a full range of capacity–volumetry of the sharp <span></span><math>\u0000 <semantics>\u0000 <mi>exp</mi>\u0000 <annotation>$exp$</annotation>\u0000 </semantics></math>-integrability law which covers the sharp Adams–Moser–Trudinger <span></span><math>\u0000 <semantics>\u0000 <mi>exp</mi>\u0000 <annotation>$exp$</annotation>\u0000 </semantics></math>-integrability law for higher order derivatives, thereby finding a new approach to a relatively complete family of the essential capacity–volumetric estimates with the optimal constants including the sharp Ahlfors–Beurling–Pólya–Szegö and Morrey–Sobolev capacity–volumetric inequalities.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144764116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasiregular mappings between equiregular sub-Riemannian manifolds 非正则子黎曼流形之间的拟正则映射
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-07-31 DOI: 10.1112/jlms.70254
Chang-Yu Guo, Sebastiano Nicolussi Golo, Marshall Williams, Yi Xuan
{"title":"Quasiregular mappings between equiregular sub-Riemannian manifolds","authors":"Chang-Yu Guo,&nbsp;Sebastiano Nicolussi Golo,&nbsp;Marshall Williams,&nbsp;Yi Xuan","doi":"10.1112/jlms.70254","DOIUrl":"https://doi.org/10.1112/jlms.70254","url":null,"abstract":"<p>In this paper, we provide an alternative approach to an expectation of Fässler et al [J. Geom. Anal. 2016] by showing that a metrically quasiregular mapping between two equiregular sub-Riemannian manifolds of homogeneous dimension <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Q</mi>\u0000 <mo>⩾</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$Qgeqslant 2$</annotation>\u0000 </semantics></math> has a negligible branch set. One main new ingredient is to develop a suitable extension of the generalized Pansu differentiability theory, in spirit of earlier works by Margulis–Mostow, Karmanova, and Vodopyanov. Another new ingredient is to apply the theory of Sobolev spaces based on upper gradients developed by Heinonen, Koskela, Shanmugalingam, and Tyson to establish the necessary analytic foundations.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144740401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The second moment of the Riemann zeta function at its local extrema 黎曼函数在局部极值处的二阶矩
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-07-29 DOI: 10.1112/jlms.70250
Christopher Hughes, Solomon Lugmayer, Andrew Pearce-Crump
{"title":"The second moment of the Riemann zeta function at its local extrema","authors":"Christopher Hughes,&nbsp;Solomon Lugmayer,&nbsp;Andrew Pearce-Crump","doi":"10.1112/jlms.70250","DOIUrl":"https://doi.org/10.1112/jlms.70250","url":null,"abstract":"<p>Conrey and Ghosh studied the second moment of the Riemann zeta function, evaluated at its local extrema along the critical line, finding the leading order behaviour to be <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mfrac>\u0000 <mrow>\u0000 <msup>\u0000 <mi>e</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mo>−</mo>\u0000 <mn>5</mn>\u0000 </mrow>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mi>π</mi>\u0000 </mrow>\u0000 </mfrac>\u0000 <mi>T</mi>\u0000 <msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>log</mi>\u0000 <mi>T</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mn>2</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$frac{e^2 - 5}{2 pi } T (log T)^2$</annotation>\u0000 </semantics></math>. This problem is closely related to a mixed moment of the Riemann zeta function and its derivative. We present a new approach which will uncover the lower order terms for the second moment as a descending chain of powers of logarithms in the asymptotic expansion.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144725530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuum limit of fourth-order Schrödinger equations on the lattice 晶格上四阶Schrödinger方程的连续统极限
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-07-29 DOI: 10.1112/jlms.70247
Jiawei Cheng, Bobo Hua
{"title":"Continuum limit of fourth-order Schrödinger equations on the lattice","authors":"Jiawei Cheng,&nbsp;Bobo Hua","doi":"10.1112/jlms.70247","DOIUrl":"https://doi.org/10.1112/jlms.70247","url":null,"abstract":"<p>In this paper, we consider the discrete fourth-order Schrödinger equation on the lattice <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>h</mi>\u0000 <msup>\u0000 <mi>Z</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$hmathbb {Z}^2$</annotation>\u0000 </semantics></math>. Uniform Strichartz estimates are established by analyzing frequency localized oscillatory integrals with the method of stationary phase and applying Littlewood–Paley inequalities. As an application, we obtain the precise rate of <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <annotation>$L^2$</annotation>\u0000 </semantics></math> convergence from the solutions of discrete semilinear equations to those of the corresponding equations on the Euclidean plane <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <annotation>$mathbb {R}^2$</annotation>\u0000 </semantics></math> in the continuum limit <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>h</mi>\u0000 <mo>→</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$h rightarrow 0$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144716597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Q-points, selective ultrafilters, and idempotents, with an application to choiceless set theory q点,选择性超滤波器,和幂等函数,在无选择集合理论中的应用
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-07-29 DOI: 10.1112/jlms.70249
David Fernández-Bretón, Jareb Navarro-Castillo, Jesús A. Soria-Rojas
{"title":"Q-points, selective ultrafilters, and idempotents, with an application to choiceless set theory","authors":"David Fernández-Bretón,&nbsp;Jareb Navarro-Castillo,&nbsp;Jesús A. Soria-Rojas","doi":"10.1112/jlms.70249","DOIUrl":"https://doi.org/10.1112/jlms.70249","url":null,"abstract":"&lt;p&gt;We study ultrafilters from the perspective of the algebra in the Čech–Stone compactification of the natural numbers, and idempotent elements therein. The first two results that we prove establish that, if &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;annotation&gt;$p$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is a Q-point (resp., a selective ultrafilter) and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;F&lt;/mi&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;annotation&gt;$mathcal F^p$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; (resp., &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;annotation&gt;$mathcal G^p$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;) is the smallest family containing &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;annotation&gt;$p$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and closed under iterated sums (resp., closed under Blass–Frolík sums and Rudin–Keisler images), then &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;F&lt;/mi&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;annotation&gt;$mathcal F^p$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; (resp., &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;annotation&gt;$mathcal G^p$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;) contains no idempotent elements. The second of these results about a selective ultrafilter has the following interesting consequence: assuming a conjecture of Blass, in models of the form &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;L&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;mo&gt;[&lt;/mo&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;mo&gt;]&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$mathnormal {mathbf {L}(mathbb {R})}[p]$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; where &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;L&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$mathnormal {mathbf {L}(mathbb {R})}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is a Solovay model (of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;ZF&lt;/mi&gt;\u0000 &lt;annotation&gt;$mathnormal {mathsf {ZF}}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; without choice) and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;annotation&gt;$p$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is a selective ultrafilter, there are no idempotent elements. In particular, the theory &lt;sp","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144716702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A topological algorithm for the Fourier transform of Stokes data at infinity 无穷远处Stokes数据傅里叶变换的拓扑算法
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-07-29 DOI: 10.1112/jlms.70253
Jean Douçot, Andreas Hohl
{"title":"A topological algorithm for the Fourier transform of Stokes data at infinity","authors":"Jean Douçot,&nbsp;Andreas Hohl","doi":"10.1112/jlms.70253","DOIUrl":"https://doi.org/10.1112/jlms.70253","url":null,"abstract":"<p>We give a topological description of the behaviour of Stokes matrices under the Fourier transform from infinity to infinity in a large number of cases of one level. This explicit, algorithmic statement is obtained by building on a recent result of T. Mochizuki about the Fourier transform of Stokes data of irregular connections on the Riemann sphere and by using the language of Stokes local systems due to P. Boalch. In particular, this induces explicit isomorphisms between wild character varieties, in a much larger range of examples than those for which such isomorphisms have previously been written down. We conjecture that these isomorphisms are compatible with the quasi-Hamiltonian structure on the wild character varieties.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70253","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144716703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Canonical colourings in random graphs 随机图中的正则着色
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-07-25 DOI: 10.1112/jlms.70239
Nina Kamčev, Mathias Schacht
{"title":"Canonical colourings in random graphs","authors":"Nina Kamčev,&nbsp;Mathias Schacht","doi":"10.1112/jlms.70239","DOIUrl":"https://doi.org/10.1112/jlms.70239","url":null,"abstract":"&lt;p&gt;Rödl and Ruciński (&lt;i&gt;J. Amer. Math. Soc&lt;/i&gt;. &lt;b&gt;8&lt;/b&gt; (1995), 917–942) established Ramsey's theorem for random graphs. In particular, for fixed integers &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 &lt;annotation&gt;$r$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 &lt;mo&gt;⩾&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$ell geqslant 2$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; they proved that &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mover&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;mo&gt;̂&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;K&lt;/mi&gt;\u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mfrac&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mfrac&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$hat{p}_{K_ell,r}(n)=n^{-frac{2}{ell +1}}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is a threshold for the Ramsey property that every &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 &lt;annotation&gt;$r$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-colouring of the edges of the binomial random graph &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$G(n,p)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; yields a monochromatic copy of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;K&lt;/mi&gt;\u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$K_ell$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. We investigate how this result extends to arbitr","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70239","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144705681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信