Gustav Hammarhjelm, Andreas Strömbergsson, Shucheng Yu
{"title":"Asymptotic estimates of large gaps between directions in certain planar quasicrystals","authors":"Gustav Hammarhjelm, Andreas Strömbergsson, Shucheng Yu","doi":"10.1112/jlms.70187","DOIUrl":"https://doi.org/10.1112/jlms.70187","url":null,"abstract":"<p>For quasicrystals of cut-and-project type in <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>d</mi>\u0000 </msup>\u0000 <annotation>$mathbb {R}^d$</annotation>\u0000 </semantics></math>, it was proved by Marklof and Strömbergsson [Int. Math. Res. Not. IMRN (2015), no. 15, 6588–6617; erratum, ibid. 2020] that the limit local statistical properties of the directions to the points in the set are described by certain <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mo>SL</mo>\u0000 <mi>d</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>R</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$operatorname{SL}_d(mathbb {R})$</annotation>\u0000 </semantics></math>-invariant point processes. In this paper, we make a detailed study of the tail asymptotics of the limiting gap statistics of the directions, for certain specific classes of planar quasicrystals.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 6","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70187","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144172000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marios Petropoulos, Simon Schulz, Grigalius Taujanskas
{"title":"One-dimensional Carrollian fluids III: Global existence and weak continuity in \u0000 \u0000 \u0000 L\u0000 ∞\u0000 \u0000 $L^infty$","authors":"Marios Petropoulos, Simon Schulz, Grigalius Taujanskas","doi":"10.1112/jlms.70186","DOIUrl":"https://doi.org/10.1112/jlms.70186","url":null,"abstract":"<p>The Carrollian fluid equations arise as the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>c</mi>\u0000 <mo>→</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$c rightarrow 0$</annotation>\u0000 </semantics></math> limit of the relativistic fluid equations and have recently experienced a surge of activity in the flat-space holography community. However, the rigorous mathematical well-posedness theory for these equations does not appear to have been previously studied. This paper is the third in a series in which we initiate the systematic analysis of the Carrollian fluid equations. In the present work, we prove the global-in-time existence of bounded entropy solutions to the isentropic Carrollian fluid equations in one spatial dimension for a particular constitutive law (<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>γ</mi>\u0000 <mo>=</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$gamma = 3$</annotation>\u0000 </semantics></math>). Our method is to use a vanishing viscosity approximation for which we establish a compensated compactness framework. Using this framework we also prove the compactness of entropy solutions in <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mi>∞</mi>\u0000 </msup>\u0000 <annotation>$L^infty$</annotation>\u0000 </semantics></math>, and establish a kinetic formulation of the problem. This global existence result in <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mi>∞</mi>\u0000 </msup>\u0000 <annotation>$L^infty$</annotation>\u0000 </semantics></math> extends the <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <annotation>$C^1$</annotation>\u0000 </semantics></math> theory presented in [2].</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 6","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144172002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}