{"title":"Jacobi forms of weight 1 on \u0000 \u0000 \u0000 \u0000 Γ\u0000 0\u0000 \u0000 \u0000 (\u0000 N\u0000 )\u0000 \u0000 \u0000 $mathbf {Gamma _0(N)}$","authors":"Jialin Li, Haowu Wang","doi":"10.1112/jlms.70306","DOIUrl":"https://doi.org/10.1112/jlms.70306","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>J</mi>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>N</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$J_{1,m}(N)$</annotation>\u0000 </semantics></math> be the vector space of Jacobi forms of weight one and index <span></span><math>\u0000 <semantics>\u0000 <mi>m</mi>\u0000 <annotation>$m$</annotation>\u0000 </semantics></math> on <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>Γ</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>N</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$Gamma _0(N)$</annotation>\u0000 </semantics></math>. In 1985, Skoruppa proved that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>J</mi>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>=</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$J_{1,m}(1)=0$</annotation>\u0000 </semantics></math> for all <span></span><math>\u0000 <semantics>\u0000 <mi>m</mi>\u0000 <annotation>$m$</annotation>\u0000 </semantics></math>. In 2007, Ibukiyama and Skoruppa proved that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>J</mi>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>N</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>=</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$J_{1,m}(N)=0$</annotation>\u0000 </semantics></math> for all <span></span><math>\u0000 <semantics>\u0000 <mi>m</mi>\u0000 <annotation>$m$</annotation>\u0000 </semantics></math> and all squarefree <span></span><math>\u0000 <semantics>\u0000 <mi>N</mi>\u0000 <annotation>$N$</annotation>\u0000 ","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 4","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145181519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0