{"title":"L\u0000 p\u0000 \u0000 $L^p$\u0000 -bounds in Safarov pseudo-differential calculus on manifolds with bounded geometry","authors":"Santiago Gómez Cobos, Michael Ruzhansky","doi":"10.1112/jlms.70145","DOIUrl":"https://doi.org/10.1112/jlms.70145","url":null,"abstract":"<p>Given a smooth complete Riemannian manifold with bounded geometry <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>M</mi>\u0000 <mo>,</mo>\u0000 <mi>g</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(M,g)$</annotation>\u0000 </semantics></math> and a linear connection <span></span><math>\u0000 <semantics>\u0000 <mo>∇</mo>\u0000 <annotation>$nabla$</annotation>\u0000 </semantics></math> on it (not necessarily a metric one), we prove the <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mi>p</mi>\u0000 </msup>\u0000 <annotation>$L^p$</annotation>\u0000 </semantics></math>-boundedness of operators belonging to the global pseudo-differential classes <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>Ψ</mi>\u0000 <mrow>\u0000 <mi>ρ</mi>\u0000 <mo>,</mo>\u0000 <mi>δ</mi>\u0000 </mrow>\u0000 <mi>m</mi>\u0000 </msubsup>\u0000 <mfenced>\u0000 <msup>\u0000 <mi>Ω</mi>\u0000 <mi>κ</mi>\u0000 </msup>\u0000 <mo>,</mo>\u0000 <mo>∇</mo>\u0000 <mo>,</mo>\u0000 <mi>τ</mi>\u0000 </mfenced>\u0000 </mrow>\u0000 <annotation>$Psi _{rho, delta }^mleft(Omega ^kappa, nabla, tau right)$</annotation>\u0000 </semantics></math> constructed by Safarov. Our result recovers classical Fefferman's theorem, and extends it to the following two situations: <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>ρ</mi>\u0000 <mo>></mo>\u0000 <mn>1</mn>\u0000 <mo>/</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$rho >1/3$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mo>∇</mo>\u0000 <annotation>$nabla$</annotation>\u0000 </semantics></math> symmetric; and <span></span><math>\u0000 <semantics>\u0000 <mo>∇</mo>\u0000 <annotation>$nabla$</annotation>\u0000 </semantics></math> flat with any values of <span></span><math>\u0000 <semantics>\u0000 <mi>ρ</mi>\u0000 <annotation>$rho$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mi>δ</mi>\u0000 <annotation>$delta$</annotation>\u0000 </semantics></math>. Moreover, as a consequence of our main result, we obtain boundedness on Sobolev and Besov spaces and some <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 ","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 4","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143831219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}