Journal of the London Mathematical Society-Second Series最新文献

筛选
英文 中文
Jacobi forms of weight 1 on Γ 0 ( N ) $mathbf {Gamma _0(N)}$ 权重1在Γ 0(N) $mathbf {Gamma _0(N)}$上的Jacobi形式
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-09-29 DOI: 10.1112/jlms.70306
Jialin Li, Haowu Wang
{"title":"Jacobi forms of weight 1 on \u0000 \u0000 \u0000 \u0000 Γ\u0000 0\u0000 \u0000 \u0000 (\u0000 N\u0000 )\u0000 \u0000 \u0000 $mathbf {Gamma _0(N)}$","authors":"Jialin Li, Haowu Wang","doi":"10.1112/jlms.70306","DOIUrl":"https://doi.org/10.1112/jlms.70306","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>J</mi>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>N</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$J_{1,m}(N)$</annotation>\u0000 </semantics></math> be the vector space of Jacobi forms of weight one and index <span></span><math>\u0000 <semantics>\u0000 <mi>m</mi>\u0000 <annotation>$m$</annotation>\u0000 </semantics></math> on <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>Γ</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>N</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$Gamma _0(N)$</annotation>\u0000 </semantics></math>. In 1985, Skoruppa proved that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>J</mi>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>=</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$J_{1,m}(1)=0$</annotation>\u0000 </semantics></math> for all <span></span><math>\u0000 <semantics>\u0000 <mi>m</mi>\u0000 <annotation>$m$</annotation>\u0000 </semantics></math>. In 2007, Ibukiyama and Skoruppa proved that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>J</mi>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>N</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>=</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$J_{1,m}(N)=0$</annotation>\u0000 </semantics></math> for all <span></span><math>\u0000 <semantics>\u0000 <mi>m</mi>\u0000 <annotation>$m$</annotation>\u0000 </semantics></math> and all squarefree <span></span><math>\u0000 <semantics>\u0000 <mi>N</mi>\u0000 <annotation>$N$</annotation>\u0000 ","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 4","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145181519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the equality of three formulas for Brumer–Stark units 关于Brumer-Stark单位的三个公式的相等性
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-09-29 DOI: 10.1112/jlms.70296
Samit Dasgupta, Matthew H. L. Honnor, Michael Spieß
{"title":"On the equality of three formulas for Brumer–Stark units","authors":"Samit Dasgupta,&nbsp;Matthew H. L. Honnor,&nbsp;Michael Spieß","doi":"10.1112/jlms.70296","DOIUrl":"https://doi.org/10.1112/jlms.70296","url":null,"abstract":"<p>We prove the equality of three conjectural formulas for Brumer–Stark units. The first formula has essentially been proven, so this paper also verifies the validity of the other two formulas.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 4","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145224422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dirac–Schrödinger operators, index theory and spectral flow Dirac-Schrödinger算子,指标理论和谱流
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-09-29 DOI: 10.1112/jlms.70301
Koen van den Dungen
{"title":"Dirac–Schrödinger operators, index theory and spectral flow","authors":"Koen van den Dungen","doi":"10.1112/jlms.70301","DOIUrl":"https://doi.org/10.1112/jlms.70301","url":null,"abstract":"<p>In this article, we study generalised Dirac–Schrödinger operators in arbitrary signatures (with or without gradings), providing a general <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>K</mi>\u0000 <mi>K</mi>\u0000 </mrow>\u0000 <annotation>$textnormal {KK}$</annotation>\u0000 </semantics></math>-theoretic framework for the study of index pairings and spectral flow. We provide a general Callias Theorem, which shows that the index (or the spectral flow, or abstractly the <span></span><math>\u0000 <semantics>\u0000 <mi>K</mi>\u0000 <annotation>$textnormal {K}$</annotation>\u0000 </semantics></math>-theory class) of Dirac–Schrödinger operators can be computed on a suitable compact hypersurface. Furthermore, if the zero eigenvalue is isolated in the spectrum of the Dirac operator, we relate the index (or spectral flow) of Dirac–Schrödinger operators to the index (or spectral flow) of corresponding Toeplitz operators. Combining both results, we obtain an index (or spectral flow) equality relating Toeplitz operators on the non-compact manifold to Toeplitz operators on the compact hypersurface. Our results generalise various known results from the literature, while presenting these results in a common unified framework.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 4","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70301","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145181617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
De Rham F $F$ -gauges and Shimura varieties 德朗F$ F$压力表和志村品种
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-09-29 DOI: 10.1112/jlms.70309
Xu Shen
{"title":"De Rham \u0000 \u0000 F\u0000 $F$\u0000 -gauges and Shimura varieties","authors":"Xu Shen","doi":"10.1112/jlms.70309","DOIUrl":"https://doi.org/10.1112/jlms.70309","url":null,"abstract":"<p>We study <span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$F$</annotation>\u0000 </semantics></math>-gauges for de Rham cohomology of smooth algebraic varieties in characteristic <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>. Applying to good reductions of Shimura varieties of Hodge type, we recover the Ekedahl–Oort stratifications by constructing universal de Rham <span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$F$</annotation>\u0000 </semantics></math>-gauges with <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>-structure. We also study the cohomology of de Rham <span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$F$</annotation>\u0000 </semantics></math>-gauges on these varieties. In particular, in the PEL-type case and when the weights of the flat automorphic vector bundles are <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-small, we determine the <span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$F$</annotation>\u0000 </semantics></math>-gauge structure on their de Rham cohomology by the associated dual Bernstein-Gelfand-Gelfand (BGG) complexes.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 4","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145224360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Jucys–Murphy method and fusion procedure for the Sergeev superalgebra 关于Sergeev超代数的jusys - murphy方法及其融合过程
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-09-22 DOI: 10.1112/jlms.70302
Iryna Kashuba, Alexander Molev, Vera Serganova
{"title":"On the Jucys–Murphy method and fusion procedure for the Sergeev superalgebra","authors":"Iryna Kashuba,&nbsp;Alexander Molev,&nbsp;Vera Serganova","doi":"10.1112/jlms.70302","DOIUrl":"10.1112/jlms.70302","url":null,"abstract":"<p>We use the Jucys–Murphy elements to construct a complete set of primitive idempotents for the Sergeev superalgebra <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>S</mi>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <annotation>${mathcal {S}}_n$</annotation>\u0000 </semantics></math>. We produce seminormal forms for the simple modules over <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>S</mi>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <annotation>${mathcal {S}}_n$</annotation>\u0000 </semantics></math> and over the spin symmetric group algebra with explicit constructions of basis vectors. We show that the idempotents can also be obtained from a new version of the fusion procedure.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70302","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145111282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Density cardinals 密度红衣主教
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-09-16 DOI: 10.1112/jlms.70300
Christina Brech, Jörg Brendle, Márcio Telles
{"title":"Density cardinals","authors":"Christina Brech,&nbsp;Jörg Brendle,&nbsp;Márcio Telles","doi":"10.1112/jlms.70300","DOIUrl":"10.1112/jlms.70300","url":null,"abstract":"<p>How many permutations are needed so that every infinite–coinfinite set of natural numbers with asymptotic density can be rearranged to no longer have the same density? We prove that the density number <span></span><math>\u0000 <semantics>\u0000 <mi>dd</mi>\u0000 <annotation>${mathfrak {dd}}$</annotation>\u0000 </semantics></math>, which answers this question, is equal to the least size of a nonmeager set of reals, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>non</mi>\u0000 <mo>(</mo>\u0000 <mi>M</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>${mathsf {non}}({mathcal {M}})$</annotation>\u0000 </semantics></math>. The same argument shows that a slight modification of the rearrangement number <span></span><math>\u0000 <semantics>\u0000 <mi>rr</mi>\u0000 <annotation>${mathfrak {rr}}$</annotation>\u0000 </semantics></math> of Blass et al. [Trans. Amer. Math. Soc. <b>373</b> (2020), no. 1, 41–69]is equal to <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>non</mi>\u0000 <mo>(</mo>\u0000 <mi>M</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>${mathsf {non}}({mathcal {M}})$</annotation>\u0000 </semantics></math>, and similarly for a cardinal invariant related to large-scale topology introduced by Banakh [3], thus answering a question of the latter. We then consider variants of <span></span><math>\u0000 <semantics>\u0000 <mi>dd</mi>\u0000 <annotation>${mathfrak {dd}}$</annotation>\u0000 </semantics></math> given by restricting the possible densities of the original set and/or of the permuted set, providing lower and upper bounds for these cardinals and proving consistency of strict inequalities. We finally look at cardinals defined in terms of relative density and of asymptotic mean, and relate them to the rearrangement numbers of Blass et al. [Trans. Amer. Math. Soc. <b>373</b> (2020), no. 1, 41–69].</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70300","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145101447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stochastic integration with respect to cylindrical Lévy processes in Hilbert spaces Hilbert空间中柱面lsamvy过程的随机积分
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-09-16 DOI: 10.1112/jlms.70298
Gergely Bodó, Markus Riedle
{"title":"Stochastic integration with respect to cylindrical Lévy processes in Hilbert spaces","authors":"Gergely Bodó,&nbsp;Markus Riedle","doi":"10.1112/jlms.70298","DOIUrl":"10.1112/jlms.70298","url":null,"abstract":"<p>In this work, we present a comprehensive theory of stochastic integration with respect to arbitrary cylindrical Lévy processes in Hilbert spaces. As cylindrical Lévy processes do not enjoy a semimartingale decomposition, our approach relies on an alternative approach to stochastic integration by decoupled tangent sequences. The space of deterministic integrands is identified as a modular space described in terms of the characteristics of the cylindrical Lévy process. The space of random integrands is described as the space of predictable processes whose trajectories are in the space of deterministic integrands almost surely. The derived space of random integrands is verified as the largest space of potential integrands, based on a classical definition of stochastic integrability. We apply the introduced theory of stochastic integration to establish a dominated convergence theorem.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70298","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145101692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Free energy of spherical Coulomb gases with point charges 带点电荷的球形库仑气体的自由能
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-09-16 DOI: 10.1112/jlms.70294
Sung-Soo Byun, Nam-Gyu Kang, Seong-Mi Seo, Meng Yang
{"title":"Free energy of spherical Coulomb gases with point charges","authors":"Sung-Soo Byun,&nbsp;Nam-Gyu Kang,&nbsp;Seong-Mi Seo,&nbsp;Meng Yang","doi":"10.1112/jlms.70294","DOIUrl":"10.1112/jlms.70294","url":null,"abstract":"<p>We consider two-dimensional Coulomb gases on the Riemann sphere with determinantal or Pfaffian structures, under external potentials that are invariant under rotations around the axis connecting the north and south poles, and with microscopic point charges inserted at the poles. These models can be interpreted as Coulomb gases on the complex plane with weakly confining potentials, where the associated droplet is the entire complex plane. For these models, we derive precise asymptotic expansions of the free energies, including the constant terms.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70294","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145101448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large deviations for the log-Gamma polymer 对数聚合物的偏差很大
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-09-16 DOI: 10.1112/jlms.70295
Tom Claeys, Julian Mauersberger
{"title":"Large deviations for the log-Gamma polymer","authors":"Tom Claeys,&nbsp;Julian Mauersberger","doi":"10.1112/jlms.70295","DOIUrl":"10.1112/jlms.70295","url":null,"abstract":"<p>We conjecture an explicit expression for the lower tail large deviation rate function of the partition function of the log-Gamma polymer. We rigorously prove our result, except for one step for which we only provide heuristic evidence. We show that the large deviation rate function matches with that of last passage percolation with exponential weights in the zero-temperature limit, and with the lower tail of the Tracy–Widom distribution for moderate deviations.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145101449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On multiplicative recurrence along linear patterns 关于沿线性模式的乘法递归
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-09-15 DOI: 10.1112/jlms.70292
Dimitrios Charamaras, Andreas Mountakis, Konstantinos Tsinas
{"title":"On multiplicative recurrence along linear patterns","authors":"Dimitrios Charamaras,&nbsp;Andreas Mountakis,&nbsp;Konstantinos Tsinas","doi":"10.1112/jlms.70292","DOIUrl":"10.1112/jlms.70292","url":null,"abstract":"&lt;p&gt;Donoso, Le, Moreira, and Sun (&lt;i&gt;J. Anal. Math&lt;/i&gt;. 149 (2023), 719–761) study sets of recurrence for actions of the multiplicative semigroup &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mo&gt;×&lt;/mo&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$(mathbb {N}, times)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and provide some sufficient conditions for sets of the form &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mo&gt;{&lt;/mo&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;a&lt;/mi&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mi&gt;b&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;mo&gt;/&lt;/mo&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;c&lt;/mi&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;mo&gt;:&lt;/mo&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;∈&lt;/mo&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;mo&gt;}&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$S=lbrace (an+b)/(cn+d) colon n in mathbb {N}rbrace $&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; to be sets of recurrence for such actions. A necessary condition for &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;annotation&gt;$S$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; to be a set of multiplicative recurrence is that for every completely multiplicative function &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 &lt;annotation&gt;$f$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; taking values on the unit circle, we have that &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mo&gt;lim inf&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;→&lt;/mo&gt;\u0000 &lt;mi&gt;∞&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;a&lt;/mi&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mi&gt;b&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;c&lt;/mi&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 ","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70292","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145101334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信