密度红衣主教

IF 1.2 2区 数学 Q1 MATHEMATICS
Christina Brech, Jörg Brendle, Márcio Telles
{"title":"密度红衣主教","authors":"Christina Brech,&nbsp;Jörg Brendle,&nbsp;Márcio Telles","doi":"10.1112/jlms.70300","DOIUrl":null,"url":null,"abstract":"<p>How many permutations are needed so that every infinite–coinfinite set of natural numbers with asymptotic density can be rearranged to no longer have the same density? We prove that the density number <span></span><math>\n <semantics>\n <mi>dd</mi>\n <annotation>${\\mathfrak {dd}}$</annotation>\n </semantics></math>, which answers this question, is equal to the least size of a nonmeager set of reals, <span></span><math>\n <semantics>\n <mrow>\n <mi>non</mi>\n <mo>(</mo>\n <mi>M</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\mathsf {non}}({\\mathcal {M}})$</annotation>\n </semantics></math>. The same argument shows that a slight modification of the rearrangement number <span></span><math>\n <semantics>\n <mi>rr</mi>\n <annotation>${\\mathfrak {rr}}$</annotation>\n </semantics></math> of Blass et al. [Trans. Amer. Math. Soc. <b>373</b> (2020), no. 1, 41–69]is equal to <span></span><math>\n <semantics>\n <mrow>\n <mi>non</mi>\n <mo>(</mo>\n <mi>M</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\mathsf {non}}({\\mathcal {M}})$</annotation>\n </semantics></math>, and similarly for a cardinal invariant related to large-scale topology introduced by Banakh [3], thus answering a question of the latter. We then consider variants of <span></span><math>\n <semantics>\n <mi>dd</mi>\n <annotation>${\\mathfrak {dd}}$</annotation>\n </semantics></math> given by restricting the possible densities of the original set and/or of the permuted set, providing lower and upper bounds for these cardinals and proving consistency of strict inequalities. We finally look at cardinals defined in terms of relative density and of asymptotic mean, and relate them to the rearrangement numbers of Blass et al. [Trans. Amer. Math. Soc. <b>373</b> (2020), no. 1, 41–69].</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70300","citationCount":"0","resultStr":"{\"title\":\"Density cardinals\",\"authors\":\"Christina Brech,&nbsp;Jörg Brendle,&nbsp;Márcio Telles\",\"doi\":\"10.1112/jlms.70300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>How many permutations are needed so that every infinite–coinfinite set of natural numbers with asymptotic density can be rearranged to no longer have the same density? We prove that the density number <span></span><math>\\n <semantics>\\n <mi>dd</mi>\\n <annotation>${\\\\mathfrak {dd}}$</annotation>\\n </semantics></math>, which answers this question, is equal to the least size of a nonmeager set of reals, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>non</mi>\\n <mo>(</mo>\\n <mi>M</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\mathsf {non}}({\\\\mathcal {M}})$</annotation>\\n </semantics></math>. The same argument shows that a slight modification of the rearrangement number <span></span><math>\\n <semantics>\\n <mi>rr</mi>\\n <annotation>${\\\\mathfrak {rr}}$</annotation>\\n </semantics></math> of Blass et al. [Trans. Amer. Math. Soc. <b>373</b> (2020), no. 1, 41–69]is equal to <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>non</mi>\\n <mo>(</mo>\\n <mi>M</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\mathsf {non}}({\\\\mathcal {M}})$</annotation>\\n </semantics></math>, and similarly for a cardinal invariant related to large-scale topology introduced by Banakh [3], thus answering a question of the latter. We then consider variants of <span></span><math>\\n <semantics>\\n <mi>dd</mi>\\n <annotation>${\\\\mathfrak {dd}}$</annotation>\\n </semantics></math> given by restricting the possible densities of the original set and/or of the permuted set, providing lower and upper bounds for these cardinals and proving consistency of strict inequalities. We finally look at cardinals defined in terms of relative density and of asymptotic mean, and relate them to the rearrangement numbers of Blass et al. [Trans. Amer. Math. Soc. <b>373</b> (2020), no. 1, 41–69].</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70300\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70300\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70300","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

需要多少个排列才能使密度渐近的无限-协无穷自然数集重新排列,不再具有相同的密度?我们证明了密度数dd ${\mathfrak {dd}}$,它回答了这个问题,等于非贫乏实数集non (M)$ {\mathsf {non}}({\mathcal {M}})$的最小大小。同样的论点表明,对Blass等人的重排数rr ${\mathfrak {rr}}$的稍微修改。阿米尔。数学。Soc. 373 (2020), no。1,41 - 69]等于non (M)$ {\mathsf {non}}({\mathcal {M}})$,对于Banakh[3]引入的与大规模拓扑相关的基数不变量也是如此,从而回答了后者的一个问题。然后,我们考虑dd ${\mathfrak {dd}}$的变体,通过限制原始集和/或排列集的可能密度,为这些基数提供下界和上界,并证明严格不等式的一致性。我们最后看一下根据相对密度和渐近均值定义的基数,并将它们与Blass等人的重排数联系起来。阿米尔。数学。Soc. 373 (2020), no。1, 41 - 69]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Density cardinals

Density cardinals

Density cardinals

Density cardinals

How many permutations are needed so that every infinite–coinfinite set of natural numbers with asymptotic density can be rearranged to no longer have the same density? We prove that the density number dd ${\mathfrak {dd}}$ , which answers this question, is equal to the least size of a nonmeager set of reals, non ( M ) ${\mathsf {non}}({\mathcal {M}})$ . The same argument shows that a slight modification of the rearrangement number rr ${\mathfrak {rr}}$ of Blass et al. [Trans. Amer. Math. Soc. 373 (2020), no. 1, 41–69]is equal to non ( M ) ${\mathsf {non}}({\mathcal {M}})$ , and similarly for a cardinal invariant related to large-scale topology introduced by Banakh [3], thus answering a question of the latter. We then consider variants of dd ${\mathfrak {dd}}$ given by restricting the possible densities of the original set and/or of the permuted set, providing lower and upper bounds for these cardinals and proving consistency of strict inequalities. We finally look at cardinals defined in terms of relative density and of asymptotic mean, and relate them to the rearrangement numbers of Blass et al. [Trans. Amer. Math. Soc. 373 (2020), no. 1, 41–69].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信