Dirac–Schrödinger operators, index theory and spectral flow

IF 1.2 2区 数学 Q1 MATHEMATICS
Koen van den Dungen
{"title":"Dirac–Schrödinger operators, index theory and spectral flow","authors":"Koen van den Dungen","doi":"10.1112/jlms.70301","DOIUrl":null,"url":null,"abstract":"<p>In this article, we study generalised Dirac–Schrödinger operators in arbitrary signatures (with or without gradings), providing a general <span></span><math>\n <semantics>\n <mrow>\n <mi>K</mi>\n <mi>K</mi>\n </mrow>\n <annotation>$\\textnormal {KK}$</annotation>\n </semantics></math>-theoretic framework for the study of index pairings and spectral flow. We provide a general Callias Theorem, which shows that the index (or the spectral flow, or abstractly the <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$\\textnormal {K}$</annotation>\n </semantics></math>-theory class) of Dirac–Schrödinger operators can be computed on a suitable compact hypersurface. Furthermore, if the zero eigenvalue is isolated in the spectrum of the Dirac operator, we relate the index (or spectral flow) of Dirac–Schrödinger operators to the index (or spectral flow) of corresponding Toeplitz operators. Combining both results, we obtain an index (or spectral flow) equality relating Toeplitz operators on the non-compact manifold to Toeplitz operators on the compact hypersurface. Our results generalise various known results from the literature, while presenting these results in a common unified framework.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70301","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70301","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we study generalised Dirac–Schrödinger operators in arbitrary signatures (with or without gradings), providing a general K K $\textnormal {KK}$ -theoretic framework for the study of index pairings and spectral flow. We provide a general Callias Theorem, which shows that the index (or the spectral flow, or abstractly the K $\textnormal {K}$ -theory class) of Dirac–Schrödinger operators can be computed on a suitable compact hypersurface. Furthermore, if the zero eigenvalue is isolated in the spectrum of the Dirac operator, we relate the index (or spectral flow) of Dirac–Schrödinger operators to the index (or spectral flow) of corresponding Toeplitz operators. Combining both results, we obtain an index (or spectral flow) equality relating Toeplitz operators on the non-compact manifold to Toeplitz operators on the compact hypersurface. Our results generalise various known results from the literature, while presenting these results in a common unified framework.

Abstract Image

Dirac-Schrödinger算子,指标理论和谱流
在本文中,我们研究了任意签名(带或不带分级)中的广义Dirac-Schrödinger算子,为研究索引对和谱流提供了一个通用的KK $\textnormal {KK}$理论框架。我们给出了一个一般的Callias定理,证明了Dirac-Schrödinger算子的索引(或谱流,或抽象的K $\textnormal {K}$ -理论类)可以在合适的紧超曲面上计算。此外,如果零特征值在Dirac算子的谱中是孤立的,我们将Dirac-Schrödinger算子的指标(或谱流)与相应的Toeplitz算子的指标(或谱流)联系起来。结合这两个结果,我们得到了非紧流形上的Toeplitz算子与紧超曲面上的Toeplitz算子之间的一个指标(或谱流)等式。我们的结果概括了文献中各种已知的结果,同时在一个共同的统一框架中呈现这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信