{"title":"关于Sergeev超代数的jusys - murphy方法及其融合过程","authors":"Iryna Kashuba, Alexander Molev, Vera Serganova","doi":"10.1112/jlms.70302","DOIUrl":null,"url":null,"abstract":"<p>We use the Jucys–Murphy elements to construct a complete set of primitive idempotents for the Sergeev superalgebra <span></span><math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <annotation>${\\mathcal {S}}_n$</annotation>\n </semantics></math>. We produce seminormal forms for the simple modules over <span></span><math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <annotation>${\\mathcal {S}}_n$</annotation>\n </semantics></math> and over the spin symmetric group algebra with explicit constructions of basis vectors. We show that the idempotents can also be obtained from a new version of the fusion procedure.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70302","citationCount":"0","resultStr":"{\"title\":\"On the Jucys–Murphy method and fusion procedure for the Sergeev superalgebra\",\"authors\":\"Iryna Kashuba, Alexander Molev, Vera Serganova\",\"doi\":\"10.1112/jlms.70302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We use the Jucys–Murphy elements to construct a complete set of primitive idempotents for the Sergeev superalgebra <span></span><math>\\n <semantics>\\n <msub>\\n <mi>S</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>${\\\\mathcal {S}}_n$</annotation>\\n </semantics></math>. We produce seminormal forms for the simple modules over <span></span><math>\\n <semantics>\\n <msub>\\n <mi>S</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>${\\\\mathcal {S}}_n$</annotation>\\n </semantics></math> and over the spin symmetric group algebra with explicit constructions of basis vectors. We show that the idempotents can also be obtained from a new version of the fusion procedure.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70302\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70302\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70302","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the Jucys–Murphy method and fusion procedure for the Sergeev superalgebra
We use the Jucys–Murphy elements to construct a complete set of primitive idempotents for the Sergeev superalgebra . We produce seminormal forms for the simple modules over and over the spin symmetric group algebra with explicit constructions of basis vectors. We show that the idempotents can also be obtained from a new version of the fusion procedure.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.