{"title":"Jacobi forms of weight 1 on \n \n \n \n Γ\n 0\n \n \n (\n N\n )\n \n \n $\\mathbf {\\Gamma _0(N)}$","authors":"Jialin Li, Haowu Wang","doi":"10.1112/jlms.70306","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>J</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>m</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$J_{1,m}(N)$</annotation>\n </semantics></math> be the vector space of Jacobi forms of weight one and index <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Γ</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Gamma _0(N)$</annotation>\n </semantics></math>. In 1985, Skoruppa proved that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>J</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>m</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$J_{1,m}(1)=0$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math>. In 2007, Ibukiyama and Skoruppa proved that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>J</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>m</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$J_{1,m}(N)=0$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> and all squarefree <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>gcd</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>,</mo>\n <mi>N</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\mathrm{gcd}(m,N)=1$</annotation>\n </semantics></math>. This paper aims to extend their results. We determine all levels <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> separately, such that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>J</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>m</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$J_{1,m}(N)=0$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math>; or <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>J</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>m</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$J_{1,m}(N)=0$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>gcd</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>,</mo>\n <mi>N</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\mathrm{gcd}(m,N)=1$</annotation>\n </semantics></math>. We also establish explicit dimension formulae of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>J</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>m</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$J_{1,m}(N)$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> are relatively prime or <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> is squarefree. These results are obtained by refining Skoruppa's method and analyzing local invariants of Weil representations. As applications, we prove the vanishing of Siegel modular forms of degree 2 and weight 1 in some cases.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70306","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be the vector space of Jacobi forms of weight one and index on . In 1985, Skoruppa proved that for all . In 2007, Ibukiyama and Skoruppa proved that for all and all squarefree with . This paper aims to extend their results. We determine all levels separately, such that for all ; or for all with . We also establish explicit dimension formulae of when and are relatively prime or is squarefree. These results are obtained by refining Skoruppa's method and analyzing local invariants of Weil representations. As applications, we prove the vanishing of Siegel modular forms of degree 2 and weight 1 in some cases.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.