Jacobi forms of weight 1 on Γ 0 ( N ) $\mathbf {\Gamma _0(N)}$

IF 1.2 2区 数学 Q1 MATHEMATICS
Jialin Li, Haowu Wang
{"title":"Jacobi forms of weight 1 on \n \n \n \n Γ\n 0\n \n \n (\n N\n )\n \n \n $\\mathbf {\\Gamma _0(N)}$","authors":"Jialin Li,&nbsp;Haowu Wang","doi":"10.1112/jlms.70306","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>J</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>m</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$J_{1,m}(N)$</annotation>\n </semantics></math> be the vector space of Jacobi forms of weight one and index <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Γ</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Gamma _0(N)$</annotation>\n </semantics></math>. In 1985, Skoruppa proved that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>J</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>m</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$J_{1,m}(1)=0$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math>. In 2007, Ibukiyama and Skoruppa proved that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>J</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>m</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$J_{1,m}(N)=0$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> and all squarefree <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>gcd</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>,</mo>\n <mi>N</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\mathrm{gcd}(m,N)=1$</annotation>\n </semantics></math>. This paper aims to extend their results. We determine all levels <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> separately, such that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>J</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>m</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$J_{1,m}(N)=0$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math>; or <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>J</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>m</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$J_{1,m}(N)=0$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>gcd</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>,</mo>\n <mi>N</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\mathrm{gcd}(m,N)=1$</annotation>\n </semantics></math>. We also establish explicit dimension formulae of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>J</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>m</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$J_{1,m}(N)$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> are relatively prime or <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> is squarefree. These results are obtained by refining Skoruppa's method and analyzing local invariants of Weil representations. As applications, we prove the vanishing of Siegel modular forms of degree 2 and weight 1 in some cases.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70306","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let J 1 , m ( N ) $J_{1,m}(N)$ be the vector space of Jacobi forms of weight one and index m $m$ on Γ 0 ( N ) $\Gamma _0(N)$ . In 1985, Skoruppa proved that J 1 , m ( 1 ) = 0 $J_{1,m}(1)=0$ for all m $m$ . In 2007, Ibukiyama and Skoruppa proved that J 1 , m ( N ) = 0 $J_{1,m}(N)=0$ for all m $m$ and all squarefree N $N$ with gcd ( m , N ) = 1 $\mathrm{gcd}(m,N)=1$ . This paper aims to extend their results. We determine all levels N $N$ separately, such that J 1 , m ( N ) = 0 $J_{1,m}(N)=0$ for all m $m$ ; or J 1 , m ( N ) = 0 $J_{1,m}(N)=0$ for all m $m$ with gcd ( m , N ) = 1 $\mathrm{gcd}(m,N)=1$ . We also establish explicit dimension formulae of J 1 , m ( N ) $J_{1,m}(N)$ when m $m$ and N $N$ are relatively prime or m $m$ is squarefree. These results are obtained by refining Skoruppa's method and analyzing local invariants of Weil representations. As applications, we prove the vanishing of Siegel modular forms of degree 2 and weight 1 in some cases.

Abstract Image

权重1在Γ 0(N) $\mathbf {\Gamma _0(N)}$上的Jacobi形式
设j1,m (N)$ J_{1,m}(N)$是权值1和指标m$ m$在Γ 0 (N)$ \Gamma _0(N)$。1985年,Skoruppa证明了对于所有m$ m$, j1,m (1)=0$ J_{1,m}(1)=0$。2007年,Ibukiyama和Skoruppa证明了j1,m (N)=0$ J_{1,m}(N)=0$对于所有m$ m$和所有无平方N$ N$具有gcd (m),N)=1$ \mathrm{gcd}(m,N)=1$。本文旨在扩展他们的结果。我们分别确定所有层N$ N$,使得J 1,m (N)=0$ J_{1,m}(N)=0$对于所有m$ m$;或者j1,m (N)=0$ J_{1,m}(N)=0$N)=1$ \mathrm{gcd}(m,N)=1$。建立了j1的显式维数公式。m (N)$ J_{1,m}(N)$当m$ m$与N$ N$相对素数或m$ m$为无平方时。这些结果是通过对Skoruppa方法的改进和对Weil表示的局部不变量的分析得到的。作为应用,我们证明了在某些情况下2次和1权的Siegel模形式的消失性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信