{"title":"Stochastic integration with respect to cylindrical Lévy processes in Hilbert spaces","authors":"Gergely Bodó, Markus Riedle","doi":"10.1112/jlms.70298","DOIUrl":null,"url":null,"abstract":"<p>In this work, we present a comprehensive theory of stochastic integration with respect to arbitrary cylindrical Lévy processes in Hilbert spaces. As cylindrical Lévy processes do not enjoy a semimartingale decomposition, our approach relies on an alternative approach to stochastic integration by decoupled tangent sequences. The space of deterministic integrands is identified as a modular space described in terms of the characteristics of the cylindrical Lévy process. The space of random integrands is described as the space of predictable processes whose trajectories are in the space of deterministic integrands almost surely. The derived space of random integrands is verified as the largest space of potential integrands, based on a classical definition of stochastic integrability. We apply the introduced theory of stochastic integration to establish a dominated convergence theorem.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70298","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70298","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we present a comprehensive theory of stochastic integration with respect to arbitrary cylindrical Lévy processes in Hilbert spaces. As cylindrical Lévy processes do not enjoy a semimartingale decomposition, our approach relies on an alternative approach to stochastic integration by decoupled tangent sequences. The space of deterministic integrands is identified as a modular space described in terms of the characteristics of the cylindrical Lévy process. The space of random integrands is described as the space of predictable processes whose trajectories are in the space of deterministic integrands almost surely. The derived space of random integrands is verified as the largest space of potential integrands, based on a classical definition of stochastic integrability. We apply the introduced theory of stochastic integration to establish a dominated convergence theorem.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.