Stochastic integration with respect to cylindrical Lévy processes in Hilbert spaces

IF 1.2 2区 数学 Q1 MATHEMATICS
Gergely Bodó, Markus Riedle
{"title":"Stochastic integration with respect to cylindrical Lévy processes in Hilbert spaces","authors":"Gergely Bodó,&nbsp;Markus Riedle","doi":"10.1112/jlms.70298","DOIUrl":null,"url":null,"abstract":"<p>In this work, we present a comprehensive theory of stochastic integration with respect to arbitrary cylindrical Lévy processes in Hilbert spaces. As cylindrical Lévy processes do not enjoy a semimartingale decomposition, our approach relies on an alternative approach to stochastic integration by decoupled tangent sequences. The space of deterministic integrands is identified as a modular space described in terms of the characteristics of the cylindrical Lévy process. The space of random integrands is described as the space of predictable processes whose trajectories are in the space of deterministic integrands almost surely. The derived space of random integrands is verified as the largest space of potential integrands, based on a classical definition of stochastic integrability. We apply the introduced theory of stochastic integration to establish a dominated convergence theorem.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70298","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70298","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present a comprehensive theory of stochastic integration with respect to arbitrary cylindrical Lévy processes in Hilbert spaces. As cylindrical Lévy processes do not enjoy a semimartingale decomposition, our approach relies on an alternative approach to stochastic integration by decoupled tangent sequences. The space of deterministic integrands is identified as a modular space described in terms of the characteristics of the cylindrical Lévy process. The space of random integrands is described as the space of predictable processes whose trajectories are in the space of deterministic integrands almost surely. The derived space of random integrands is verified as the largest space of potential integrands, based on a classical definition of stochastic integrability. We apply the introduced theory of stochastic integration to establish a dominated convergence theorem.

Abstract Image

Abstract Image

Hilbert空间中柱面lsamvy过程的随机积分
在这项工作中,我们提出了Hilbert空间中任意柱面lsamvy过程的随机积分的综合理论。由于圆柱形lsamvy过程不具有半鞅分解,我们的方法依赖于解耦切序列随机积分的另一种方法。确定积分的空间被识别为一个模空间,描述了柱面lsamvy过程的特征。随机积分空间被描述为可预测过程的空间,这些过程的轨迹几乎肯定地在确定性积分空间中。根据随机可积性的经典定义,证明了随机可积的导出空间是最大的潜在可积空间。我们应用引入的随机积分理论建立了一个主导收敛定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信