Dimitrios Charamaras, Andreas Mountakis, Konstantinos Tsinas
{"title":"On multiplicative recurrence along linear patterns","authors":"Dimitrios Charamaras, Andreas Mountakis, Konstantinos Tsinas","doi":"10.1112/jlms.70292","DOIUrl":null,"url":null,"abstract":"<p>Donoso, Le, Moreira, and Sun (<i>J. Anal. Math</i>. 149 (2023), 719–761) study sets of recurrence for actions of the multiplicative semigroup <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>,</mo>\n <mo>×</mo>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mathbb {N}, \\times)$</annotation>\n </semantics></math> and provide some sufficient conditions for sets of the form <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mo>=</mo>\n <mo>{</mo>\n <mo>(</mo>\n <mi>a</mi>\n <mi>n</mi>\n <mo>+</mo>\n <mi>b</mi>\n <mo>)</mo>\n <mo>/</mo>\n <mo>(</mo>\n <mi>c</mi>\n <mi>n</mi>\n <mo>+</mo>\n <mi>d</mi>\n <mo>)</mo>\n <mo>:</mo>\n <mi>n</mi>\n <mo>∈</mo>\n <mi>N</mi>\n <mo>}</mo>\n </mrow>\n <annotation>$S=\\lbrace (an+b)/(cn+d) \\colon n \\in \\mathbb {N}\\rbrace $</annotation>\n </semantics></math> to be sets of recurrence for such actions. A necessary condition for <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> to be a set of multiplicative recurrence is that for every completely multiplicative function <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> taking values on the unit circle, we have that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>lim inf</mo>\n <mrow>\n <mi>n</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>|</mo>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n <mi>a</mi>\n <mi>n</mi>\n <mo>+</mo>\n <mi>b</mi>\n <mo>)</mo>\n </mrow>\n <mo>−</mo>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n <mi>c</mi>\n <mi>n</mi>\n <mo>+</mo>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n <mo>|</mo>\n </mrow>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\liminf _{n \\rightarrow \\infty } |f(an+b)-f(cn+d)|=0$</annotation>\n </semantics></math>. In this article, we fully characterize the integer quadruples <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>a</mi>\n <mo>,</mo>\n <mi>b</mi>\n <mo>,</mo>\n <mi>c</mi>\n <mo>,</mo>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(a,b,c,d)$</annotation>\n </semantics></math> which satisfy the latter property. Our result generalizes a result of Klurman and Mangerel (<i>Math. Ann</i>. 372 (2018), 651–697) concerning the pair <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(n,n+1)$</annotation>\n </semantics></math>, as well as some results from (Donoso, Le, Moreira, and Sun, <i>J. Anal. Math</i>. 149 (2023), 719–761). In addition, we prove that, under the same conditions on <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>a</mi>\n <mo>,</mo>\n <mi>b</mi>\n <mo>,</mo>\n <mi>c</mi>\n <mo>,</mo>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(a,b,c,d)$</annotation>\n </semantics></math>, the set <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> is a set of recurrence for finitely generated actions of <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>,</mo>\n <mo>×</mo>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mathbb {N}, \\times)$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70292","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70292","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Donoso, Le, Moreira, and Sun (J. Anal. Math. 149 (2023), 719–761) study sets of recurrence for actions of the multiplicative semigroup and provide some sufficient conditions for sets of the form to be sets of recurrence for such actions. A necessary condition for to be a set of multiplicative recurrence is that for every completely multiplicative function taking values on the unit circle, we have that . In this article, we fully characterize the integer quadruples which satisfy the latter property. Our result generalizes a result of Klurman and Mangerel (Math. Ann. 372 (2018), 651–697) concerning the pair , as well as some results from (Donoso, Le, Moreira, and Sun, J. Anal. Math. 149 (2023), 719–761). In addition, we prove that, under the same conditions on , the set is a set of recurrence for finitely generated actions of .
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.