Journal of the London Mathematical Society-Second Series最新文献

筛选
英文 中文
Correlations of the squares of the Riemann zeta function on the critical line 黎曼ζ函数在临界线上的平方的相关性
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-09-14 DOI: 10.1112/jlms.70289
Valeriya Kovaleva
{"title":"Correlations of the squares of the Riemann zeta function on the critical line","authors":"Valeriya Kovaleva","doi":"10.1112/jlms.70289","DOIUrl":"10.1112/jlms.70289","url":null,"abstract":"<p>We compute the average of a product of two shifted squares of the Riemann zeta function on the critical line with shifts up to size <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>T</mi>\u0000 <mrow>\u0000 <mn>3</mn>\u0000 <mo>/</mo>\u0000 <mn>2</mn>\u0000 <mo>−</mo>\u0000 <mi>ε</mi>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$T^{3/2-varepsilon }$</annotation>\u0000 </semantics></math>. We give an explicit expression for such an average and derive an approximate spectral expansion for the error term similar to Motohashi's. As a consequence, we also compute the (2,2)-moment of moment of the Riemann zeta function, for which we partially verify (and partially refute) a conjecture of Bailey and Keating.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70289","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145051242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Second-order regularity for degenerate p $p$ -Laplace type equations with log-concave weights 具有对数凹权值的退化p$ p$ -拉普拉斯型方程的二阶正则性
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-09-14 DOI: 10.1112/jlms.70299
Carlo Alberto Antonini, Giulio Ciraolo, Francesco Pagliarin
{"title":"Second-order regularity for degenerate \u0000 \u0000 p\u0000 $p$\u0000 -Laplace type equations with log-concave weights","authors":"Carlo Alberto Antonini,&nbsp;Giulio Ciraolo,&nbsp;Francesco Pagliarin","doi":"10.1112/jlms.70299","DOIUrl":"10.1112/jlms.70299","url":null,"abstract":"<p>We consider weighted <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-Laplace type equations with homogeneous Neumann boundary conditions in convex domains, where the weight is a log-concave function which may degenerate at the boundary. In the case of bounded domains, we provide sharp global second-order estimates. For unbounded domains, we prove local estimates at the boundary. The results are new even for the case <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>p</mi>\u0000 <mo>=</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$p=2$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70299","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145051243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pathwise convergence of the Euler scheme for rough and stochastic differential equations 粗糙和随机微分方程的欧拉格式的路径收敛性
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-09-12 DOI: 10.1112/jlms.70297
Andrew L. Allan, Anna P. Kwossek, Chong Liu, David J. Prömel
{"title":"Pathwise convergence of the Euler scheme for rough and stochastic differential equations","authors":"Andrew L. Allan,&nbsp;Anna P. Kwossek,&nbsp;Chong Liu,&nbsp;David J. Prömel","doi":"10.1112/jlms.70297","DOIUrl":"10.1112/jlms.70297","url":null,"abstract":"<p>The convergence of the first-order Euler scheme and an approximative variant thereof, along with convergence rates, are established for rough differential equations driven by càdlàg paths satisfying a suitable criterion, namely the so-called Property (RIE), along time discretizations with vanishing mesh size. This property is then verified for almost all sample paths of Brownian motion, Itô processes, Lévy processes, and general càdlàg semimartingales, as well as the driving signals of both mixed and rough stochastic differential equations, relative to various time discretizations. Consequently, we obtain pathwise convergence in <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-variation of the Euler–Maruyama scheme for stochastic differential equations driven by these processes.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70297","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145037565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triple sums of Kloosterman sums and the discrepancy of modular inverses Kloosterman和的三重和与模逆的不一致
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-09-12 DOI: 10.1112/jlms.70291
Valentin Blomer, Morten S. Risager, Igor E. Shparlinski
{"title":"Triple sums of Kloosterman sums and the discrepancy of modular inverses","authors":"Valentin Blomer,&nbsp;Morten S. Risager,&nbsp;Igor E. Shparlinski","doi":"10.1112/jlms.70291","DOIUrl":"10.1112/jlms.70291","url":null,"abstract":"<p>We investigate the distribution of modular inverses modulo positive integers <span></span><math>\u0000 <semantics>\u0000 <mi>c</mi>\u0000 <annotation>$c$</annotation>\u0000 </semantics></math> in a large interval. We provide upper and lower bounds for their box, ball, and isotropic discrepancy, thereby exhibiting some deviations from random point sets. The analysis is based, among other things, on a new bound for a triple sum of Kloosterman sums.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70291","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145038058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On shrinking targets for linear expanding and hyperbolic toral endomorphisms 关于线性膨胀和双曲全自同态的收缩目标
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-09-11 DOI: 10.1112/jlms.70287
Zhang-nan Hu, Tomas Persson, Wanlou Wu, Yiwei Zhang
{"title":"On shrinking targets for linear expanding and hyperbolic toral endomorphisms","authors":"Zhang-nan Hu,&nbsp;Tomas Persson,&nbsp;Wanlou Wu,&nbsp;Yiwei Zhang","doi":"10.1112/jlms.70287","DOIUrl":"10.1112/jlms.70287","url":null,"abstract":"&lt;p&gt;Let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;annotation&gt;$A$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be an invertible &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;mo&gt;×&lt;/mo&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$dtimes d$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; matrix with integer elements. Then &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;annotation&gt;$A$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; determines a self-map &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;annotation&gt;$T$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of the &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;annotation&gt;$d$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-dimensional torus &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;/&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;Z&lt;/mi&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$mathbb {T}^d=mathbb {R}^d/mathbb {Z}^d$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. Given a real number &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;τ&lt;/mi&gt;\u0000 &lt;mo&gt;&gt;&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$tau &gt;0$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, and a sequence &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;{&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;z&lt;/mi&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;}&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$lbrace z_nrbrace$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of points in &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;annotation&gt;$mathbb {T}^d$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;W&lt;/mi&gt;\u0000 &lt;mi&gt;τ&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$W_tau$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be the set of points &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;x&lt;/mi&gt;\u0000 &lt;mo&gt;∈&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$xin","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145037697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A circle method approach to K-multimagic squares k -多魔方的圆法求解
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-09-11 DOI: 10.1112/jlms.70290
Daniel Flores
{"title":"A circle method approach to K-multimagic squares","authors":"Daniel Flores","doi":"10.1112/jlms.70290","DOIUrl":"10.1112/jlms.70290","url":null,"abstract":"&lt;p&gt;In this paper, we investigate &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;K&lt;/mi&gt;\u0000 &lt;annotation&gt;$K$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;&lt;i&gt;-multimagic squares&lt;/i&gt; of order &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;annotation&gt;$N$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. These are &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;mo&gt;×&lt;/mo&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$N times N$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; magic squares that remain magic after raising each element to the &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;annotation&gt;$k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;th power for all &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mo&gt;⩽&lt;/mo&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;mo&gt;⩽&lt;/mo&gt;\u0000 &lt;mi&gt;K&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$2 leqslant k leqslant K$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. Given &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;K&lt;/mi&gt;\u0000 &lt;mo&gt;⩾&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$K geqslant 2$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, we consider the problem of establishing the smallest integer &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;K&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$N_2(K)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; for which there exist &lt;i&gt;nontrivial&lt;/i&gt; &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;K&lt;/mi&gt;\u0000 &lt;annotation&gt;$K$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-multimagic squares of order &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;K&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$N_2(K)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. Previous results on multimagic squares show that &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 ","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70290","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145037699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyclic cubic points on higher genus curves 高属曲线上的循环三次点
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-09-11 DOI: 10.1112/jlms.70288
James Rawson
{"title":"Cyclic cubic points on higher genus curves","authors":"James Rawson","doi":"10.1112/jlms.70288","DOIUrl":"10.1112/jlms.70288","url":null,"abstract":"<p>The distribution of degree <span></span><math>\u0000 <semantics>\u0000 <mi>d</mi>\u0000 <annotation>$d$</annotation>\u0000 </semantics></math> points on curves is well understood, especially for low degrees. We refine this study to include information on the Galois group in the simplest interesting case: <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>=</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$d = 3$</annotation>\u0000 </semantics></math>. For curves of genus at least 5, we show cubic points with Galois group <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>C</mi>\u0000 <mn>3</mn>\u0000 </msub>\u0000 <annotation>$C_3$</annotation>\u0000 </semantics></math> arise from well-structured morphisms, along with providing computable tests for the existence of such morphisms. We prove the same for curves of lower genus under some geometric or arithmetic assumptions.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70288","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145037698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functorial constructions related to double Poisson vertex algebras 有关双泊松顶点代数的函子构造
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-09-11 DOI: 10.1112/jlms.70264
Tristan Bozec, Maxime Fairon, Anne Moreau
{"title":"Functorial constructions related to double Poisson vertex algebras","authors":"Tristan Bozec,&nbsp;Maxime Fairon,&nbsp;Anne Moreau","doi":"10.1112/jlms.70264","DOIUrl":"10.1112/jlms.70264","url":null,"abstract":"<p>For any double Poisson algebra, we produce a double Poisson vertex algebra using the jet algebra construction. We show that this construction is compatible with the representation functor which associates to any double Poisson (vertex) algebra and any positive integer a Poisson (vertex) algebra. We also consider related constructions, such as Poisson reductions and Hamiltonian reductions, with the aim of comparing the different corresponding categories. This allows us to provide various interesting examples of double Poisson vertex algebras, in particular from double quivers.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70264","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145037518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The diagonal p $p$ -permutation functor k R k $kR_k$ 对角线p$ p$ -排列函子kR k$ kR_k$
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-09-09 DOI: 10.1112/jlms.70285
Serge Bouc
{"title":"The diagonal \u0000 \u0000 p\u0000 $p$\u0000 -permutation functor \u0000 \u0000 \u0000 k\u0000 \u0000 R\u0000 k\u0000 \u0000 \u0000 $kR_k$","authors":"Serge Bouc","doi":"10.1112/jlms.70285","DOIUrl":"10.1112/jlms.70285","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math> be an algebraically closed field of positive characteristic <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>. We describe the full lattice of subfunctors of the diagonal <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-permutation functor <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <msub>\u0000 <mi>R</mi>\u0000 <mi>k</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$kR_k$</annotation>\u0000 </semantics></math> obtained by <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math>-linear extension from the functor <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>R</mi>\u0000 <mi>k</mi>\u0000 </msub>\u0000 <annotation>$R_k$</annotation>\u0000 </semantics></math> of linear representations over <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math>. This leads to the description of the “composition factors” <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>S</mi>\u0000 <mi>P</mi>\u0000 </msub>\u0000 <annotation>$S_P$</annotation>\u0000 </semantics></math> of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <msub>\u0000 <mi>R</mi>\u0000 <mi>k</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$kR_k$</annotation>\u0000 </semantics></math>, which are parameterized by finite <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-groups (up to isomorphism), and of the evaluations of these particular simple diagonal <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-permutation functors over <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70285","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145021851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A coboundary Temperley–Lieb category for sl 2 $mathfrak {sl}_{2}$ -crystals 2 $mathfrak {sl}_{2}$ -晶体的共边界Temperley-Lieb范畴
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-09-09 DOI: 10.1112/jlms.70283
Moaaz Alqady, Mateusz Stroiński
{"title":"A coboundary Temperley–Lieb category for \u0000 \u0000 \u0000 sl\u0000 2\u0000 \u0000 $mathfrak {sl}_{2}$\u0000 -crystals","authors":"Moaaz Alqady,&nbsp;Mateusz Stroiński","doi":"10.1112/jlms.70283","DOIUrl":"10.1112/jlms.70283","url":null,"abstract":"&lt;p&gt;By considering a suitable renormalization of the Temperley–Lieb category, we study its specialization to the case &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$q=0$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. Unlike the &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;mo&gt;≠&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$qne 0$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; case, the obtained monoidal category, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;TL&lt;/mi&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$mathcal {TL}_0(mathbb {k})$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, is not rigid or braided. We provide a closed formula for the Jones–Wenzl projectors in &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;TL&lt;/mi&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$mathcal {TL}_0(mathbb {k})$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and give semisimple bases for its endomorphism algebras. We explain how to obtain the same basis using the representation theory of finite inverse monoids, via the associated Möbius inversion. We then describe a coboundary structure on &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;TL&lt;/mi&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$mathcal {TL}_0(mathbb {k})$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and show that its idempotent completion is coboundary monoidally equivalent to the category of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;sl&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$mathfrak {sl}_{2}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-crystals. This gives a diagrammatic description of the commutor for &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semant","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70283","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145012731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信