{"title":"Correlations of the squares of the Riemann zeta function on the critical line","authors":"Valeriya Kovaleva","doi":"10.1112/jlms.70289","DOIUrl":"10.1112/jlms.70289","url":null,"abstract":"<p>We compute the average of a product of two shifted squares of the Riemann zeta function on the critical line with shifts up to size <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>T</mi>\u0000 <mrow>\u0000 <mn>3</mn>\u0000 <mo>/</mo>\u0000 <mn>2</mn>\u0000 <mo>−</mo>\u0000 <mi>ε</mi>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$T^{3/2-varepsilon }$</annotation>\u0000 </semantics></math>. We give an explicit expression for such an average and derive an approximate spectral expansion for the error term similar to Motohashi's. As a consequence, we also compute the (2,2)-moment of moment of the Riemann zeta function, for which we partially verify (and partially refute) a conjecture of Bailey and Keating.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70289","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145051242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlo Alberto Antonini, Giulio Ciraolo, Francesco Pagliarin
{"title":"Second-order regularity for degenerate \u0000 \u0000 p\u0000 $p$\u0000 -Laplace type equations with log-concave weights","authors":"Carlo Alberto Antonini, Giulio Ciraolo, Francesco Pagliarin","doi":"10.1112/jlms.70299","DOIUrl":"10.1112/jlms.70299","url":null,"abstract":"<p>We consider weighted <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-Laplace type equations with homogeneous Neumann boundary conditions in convex domains, where the weight is a log-concave function which may degenerate at the boundary. In the case of bounded domains, we provide sharp global second-order estimates. For unbounded domains, we prove local estimates at the boundary. The results are new even for the case <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>p</mi>\u0000 <mo>=</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$p=2$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70299","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145051243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}