Correlations of the squares of the Riemann zeta function on the critical line

IF 1.2 2区 数学 Q1 MATHEMATICS
Valeriya Kovaleva
{"title":"Correlations of the squares of the Riemann zeta function on the critical line","authors":"Valeriya Kovaleva","doi":"10.1112/jlms.70289","DOIUrl":null,"url":null,"abstract":"<p>We compute the average of a product of two shifted squares of the Riemann zeta function on the critical line with shifts up to size <span></span><math>\n <semantics>\n <msup>\n <mi>T</mi>\n <mrow>\n <mn>3</mn>\n <mo>/</mo>\n <mn>2</mn>\n <mo>−</mo>\n <mi>ε</mi>\n </mrow>\n </msup>\n <annotation>$T^{3/2-\\varepsilon }$</annotation>\n </semantics></math>. We give an explicit expression for such an average and derive an approximate spectral expansion for the error term similar to Motohashi's. As a consequence, we also compute the (2,2)-moment of moment of the Riemann zeta function, for which we partially verify (and partially refute) a conjecture of Bailey and Keating.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70289","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70289","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We compute the average of a product of two shifted squares of the Riemann zeta function on the critical line with shifts up to size T 3 / 2 ε $T^{3/2-\varepsilon }$ . We give an explicit expression for such an average and derive an approximate spectral expansion for the error term similar to Motohashi's. As a consequence, we also compute the (2,2)-moment of moment of the Riemann zeta function, for which we partially verify (and partially refute) a conjecture of Bailey and Keating.

Abstract Image

Abstract Image

黎曼ζ函数在临界线上的平方的相关性
我们计算了Riemann zeta函数的两个移位平方乘积在临界线上的平均值,其移位的大小可达T³/2- ε $T^{3/2-\varepsilon}$。我们给出了这种平均值的显式表达式,并推导了误差项的近似谱展开,类似于Motohashi的。因此,我们还计算了Riemann zeta函数的(2,2)-矩,为此我们部分验证(并部分驳斥)了Bailey和Keating的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信