Functorial constructions related to double Poisson vertex algebras

IF 1.2 2区 数学 Q1 MATHEMATICS
Tristan Bozec, Maxime Fairon, Anne Moreau
{"title":"Functorial constructions related to double Poisson vertex algebras","authors":"Tristan Bozec,&nbsp;Maxime Fairon,&nbsp;Anne Moreau","doi":"10.1112/jlms.70264","DOIUrl":null,"url":null,"abstract":"<p>For any double Poisson algebra, we produce a double Poisson vertex algebra using the jet algebra construction. We show that this construction is compatible with the representation functor which associates to any double Poisson (vertex) algebra and any positive integer a Poisson (vertex) algebra. We also consider related constructions, such as Poisson reductions and Hamiltonian reductions, with the aim of comparing the different corresponding categories. This allows us to provide various interesting examples of double Poisson vertex algebras, in particular from double quivers.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70264","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70264","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For any double Poisson algebra, we produce a double Poisson vertex algebra using the jet algebra construction. We show that this construction is compatible with the representation functor which associates to any double Poisson (vertex) algebra and any positive integer a Poisson (vertex) algebra. We also consider related constructions, such as Poisson reductions and Hamiltonian reductions, with the aim of comparing the different corresponding categories. This allows us to provide various interesting examples of double Poisson vertex algebras, in particular from double quivers.

Abstract Image

Abstract Image

Abstract Image

有关双泊松顶点代数的函子构造
对于任何二重泊松代数,我们使用喷射代数构造得到了一个二重泊松顶点代数。我们证明了这种构造与任何双泊松(顶点)代数和任何正整数泊松(顶点)代数的表示函子是相容的。我们还考虑了相关的结构,如泊松约化和哈密顿约化,目的是比较不同的相应类别。这允许我们提供各种有趣的双泊松顶点代数的例子,特别是双颤振。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信