关于线性膨胀和双曲全自同态的收缩目标

IF 1.2 2区 数学 Q1 MATHEMATICS
Zhang-nan Hu, Tomas Persson, Wanlou Wu, Yiwei Zhang
{"title":"关于线性膨胀和双曲全自同态的收缩目标","authors":"Zhang-nan Hu,&nbsp;Tomas Persson,&nbsp;Wanlou Wu,&nbsp;Yiwei Zhang","doi":"10.1112/jlms.70287","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> be an invertible <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>×</mo>\n <mi>d</mi>\n </mrow>\n <annotation>$d\\times d$</annotation>\n </semantics></math> matrix with integer elements. Then <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> determines a self-map <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> of the <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>-dimensional torus <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>T</mi>\n <mi>d</mi>\n </msup>\n <mo>=</mo>\n <msup>\n <mi>R</mi>\n <mi>d</mi>\n </msup>\n <mo>/</mo>\n <msup>\n <mi>Z</mi>\n <mi>d</mi>\n </msup>\n </mrow>\n <annotation>$\\mathbb {T}^d=\\mathbb {R}^d/\\mathbb {Z}^d$</annotation>\n </semantics></math>. Given a real number <span></span><math>\n <semantics>\n <mrow>\n <mi>τ</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\tau &gt;0$</annotation>\n </semantics></math>, and a sequence <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <msub>\n <mi>z</mi>\n <mi>n</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace z_n\\rbrace$</annotation>\n </semantics></math> of points in <span></span><math>\n <semantics>\n <msup>\n <mi>T</mi>\n <mi>d</mi>\n </msup>\n <annotation>$\\mathbb {T}^d$</annotation>\n </semantics></math>, let <span></span><math>\n <semantics>\n <msub>\n <mi>W</mi>\n <mi>τ</mi>\n </msub>\n <annotation>$W_\\tau$</annotation>\n </semantics></math> be the set of points <span></span><math>\n <semantics>\n <mrow>\n <mi>x</mi>\n <mo>∈</mo>\n <msup>\n <mi>T</mi>\n <mi>d</mi>\n </msup>\n </mrow>\n <annotation>$x\\in \\mathbb {T}^d$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>T</mi>\n <mi>n</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mo>∈</mo>\n <mi>B</mi>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>z</mi>\n <mi>n</mi>\n </msub>\n <mo>,</mo>\n <msup>\n <mi>e</mi>\n <mrow>\n <mo>−</mo>\n <mi>n</mi>\n <mi>τ</mi>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$T^n(x)\\in B(z_n,e^{-n\\tau })$</annotation>\n </semantics></math> for infinitely many <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>∈</mo>\n <mi>N</mi>\n </mrow>\n <annotation>$n\\in \\mathbb {N}$</annotation>\n </semantics></math>. The Hausdorff dimension of <span></span><math>\n <semantics>\n <msub>\n <mi>W</mi>\n <mi>τ</mi>\n </msub>\n <annotation>$W_\\tau$</annotation>\n </semantics></math> has previously been studied by Hill–Velani and Li–Liao–Velani–Zorin. We provide a lower bound on the Hausdorff dimension of <span></span><math>\n <semantics>\n <msub>\n <mi>W</mi>\n <mi>τ</mi>\n </msub>\n <annotation>$W_\\tau$</annotation>\n </semantics></math> for any expanding matrix. For hyperbolic matrices, we compute the dimension of <span></span><math>\n <semantics>\n <msub>\n <mi>W</mi>\n <mi>τ</mi>\n </msub>\n <annotation>$W_\\tau$</annotation>\n </semantics></math> only when <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> is a <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mo>×</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$2 \\times 2$</annotation>\n </semantics></math> matrix. We give counterexamples to a natural candidate for a dimension formula for general dimension <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On shrinking targets for linear expanding and hyperbolic toral endomorphisms\",\"authors\":\"Zhang-nan Hu,&nbsp;Tomas Persson,&nbsp;Wanlou Wu,&nbsp;Yiwei Zhang\",\"doi\":\"10.1112/jlms.70287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> be an invertible <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>×</mo>\\n <mi>d</mi>\\n </mrow>\\n <annotation>$d\\\\times d$</annotation>\\n </semantics></math> matrix with integer elements. Then <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> determines a self-map <span></span><math>\\n <semantics>\\n <mi>T</mi>\\n <annotation>$T$</annotation>\\n </semantics></math> of the <span></span><math>\\n <semantics>\\n <mi>d</mi>\\n <annotation>$d$</annotation>\\n </semantics></math>-dimensional torus <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>T</mi>\\n <mi>d</mi>\\n </msup>\\n <mo>=</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>d</mi>\\n </msup>\\n <mo>/</mo>\\n <msup>\\n <mi>Z</mi>\\n <mi>d</mi>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbb {T}^d=\\\\mathbb {R}^d/\\\\mathbb {Z}^d$</annotation>\\n </semantics></math>. Given a real number <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>τ</mi>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\tau &gt;0$</annotation>\\n </semantics></math>, and a sequence <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>{</mo>\\n <msub>\\n <mi>z</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\lbrace z_n\\\\rbrace$</annotation>\\n </semantics></math> of points in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>T</mi>\\n <mi>d</mi>\\n </msup>\\n <annotation>$\\\\mathbb {T}^d$</annotation>\\n </semantics></math>, let <span></span><math>\\n <semantics>\\n <msub>\\n <mi>W</mi>\\n <mi>τ</mi>\\n </msub>\\n <annotation>$W_\\\\tau$</annotation>\\n </semantics></math> be the set of points <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>x</mi>\\n <mo>∈</mo>\\n <msup>\\n <mi>T</mi>\\n <mi>d</mi>\\n </msup>\\n </mrow>\\n <annotation>$x\\\\in \\\\mathbb {T}^d$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>T</mi>\\n <mi>n</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>∈</mo>\\n <mi>B</mi>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>z</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>,</mo>\\n <msup>\\n <mi>e</mi>\\n <mrow>\\n <mo>−</mo>\\n <mi>n</mi>\\n <mi>τ</mi>\\n </mrow>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$T^n(x)\\\\in B(z_n,e^{-n\\\\tau })$</annotation>\\n </semantics></math> for infinitely many <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>∈</mo>\\n <mi>N</mi>\\n </mrow>\\n <annotation>$n\\\\in \\\\mathbb {N}$</annotation>\\n </semantics></math>. The Hausdorff dimension of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>W</mi>\\n <mi>τ</mi>\\n </msub>\\n <annotation>$W_\\\\tau$</annotation>\\n </semantics></math> has previously been studied by Hill–Velani and Li–Liao–Velani–Zorin. We provide a lower bound on the Hausdorff dimension of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>W</mi>\\n <mi>τ</mi>\\n </msub>\\n <annotation>$W_\\\\tau$</annotation>\\n </semantics></math> for any expanding matrix. For hyperbolic matrices, we compute the dimension of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>W</mi>\\n <mi>τ</mi>\\n </msub>\\n <annotation>$W_\\\\tau$</annotation>\\n </semantics></math> only when <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> is a <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mo>×</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$2 \\\\times 2$</annotation>\\n </semantics></math> matrix. We give counterexamples to a natural candidate for a dimension formula for general dimension <span></span><math>\\n <semantics>\\n <mi>d</mi>\\n <annotation>$d$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70287\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70287","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设A$ A$是一个可逆的d × d$ d\乘以d$整数元矩阵。然后A$ A$确定d$ d$维环的自映射T$ T$ d = R d / Zd$ \mathbb {T}^d=\mathbb {R}^d/\mathbb {Z}^d$。给定一个实数τ >;0$ \tau >0$,和一个序列{z n} $\ rbrace z_n\rbrace$中T中的点d$ \mathbb {T}^d$,设W τ $W_\ τ $是点x∈T d$ x\在\mathbb {T}^d$中的集合,使得T n(x)∈B (z n,e−n τ)$ T^n(x)\in B(z_n,e^{-n\tau})$对于无限多个n∈n $n\in \mathbb {n}$。W τ $W_\tau$的Hausdorff维数已经被Hill-Velani和Li-Liao-Velani-Zorin研究过。我们给出了任意展开式矩阵W τ $W_\tau$的Hausdorff维数的下界。对于双曲矩阵,只有当A$ A$是一个2 × 2$ 2 \乘以2$矩阵时,我们才计算W τ $W_\tau$的维数。我们给出了一般维数d$ d$的一个自然候选维数公式的反例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On shrinking targets for linear expanding and hyperbolic toral endomorphisms

On shrinking targets for linear expanding and hyperbolic toral endomorphisms

On shrinking targets for linear expanding and hyperbolic toral endomorphisms

Let A $A$ be an invertible d × d $d\times d$ matrix with integer elements. Then A $A$ determines a self-map T $T$ of the d $d$ -dimensional torus T d = R d / Z d $\mathbb {T}^d=\mathbb {R}^d/\mathbb {Z}^d$ . Given a real number τ > 0 $\tau >0$ , and a sequence { z n } $\lbrace z_n\rbrace$ of points in T d $\mathbb {T}^d$ , let W τ $W_\tau$ be the set of points x T d $x\in \mathbb {T}^d$ such that T n ( x ) B ( z n , e n τ ) $T^n(x)\in B(z_n,e^{-n\tau })$ for infinitely many n N $n\in \mathbb {N}$ . The Hausdorff dimension of W τ $W_\tau$ has previously been studied by Hill–Velani and Li–Liao–Velani–Zorin. We provide a lower bound on the Hausdorff dimension of W τ $W_\tau$ for any expanding matrix. For hyperbolic matrices, we compute the dimension of W τ $W_\tau$ only when A $A$ is a 2 × 2 $2 \times 2$ matrix. We give counterexamples to a natural candidate for a dimension formula for general dimension d $d$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信