Zhang-nan Hu, Tomas Persson, Wanlou Wu, Yiwei Zhang
{"title":"关于线性膨胀和双曲全自同态的收缩目标","authors":"Zhang-nan Hu, Tomas Persson, Wanlou Wu, Yiwei Zhang","doi":"10.1112/jlms.70287","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> be an invertible <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>×</mo>\n <mi>d</mi>\n </mrow>\n <annotation>$d\\times d$</annotation>\n </semantics></math> matrix with integer elements. Then <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> determines a self-map <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> of the <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>-dimensional torus <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>T</mi>\n <mi>d</mi>\n </msup>\n <mo>=</mo>\n <msup>\n <mi>R</mi>\n <mi>d</mi>\n </msup>\n <mo>/</mo>\n <msup>\n <mi>Z</mi>\n <mi>d</mi>\n </msup>\n </mrow>\n <annotation>$\\mathbb {T}^d=\\mathbb {R}^d/\\mathbb {Z}^d$</annotation>\n </semantics></math>. Given a real number <span></span><math>\n <semantics>\n <mrow>\n <mi>τ</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\tau >0$</annotation>\n </semantics></math>, and a sequence <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <msub>\n <mi>z</mi>\n <mi>n</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace z_n\\rbrace$</annotation>\n </semantics></math> of points in <span></span><math>\n <semantics>\n <msup>\n <mi>T</mi>\n <mi>d</mi>\n </msup>\n <annotation>$\\mathbb {T}^d$</annotation>\n </semantics></math>, let <span></span><math>\n <semantics>\n <msub>\n <mi>W</mi>\n <mi>τ</mi>\n </msub>\n <annotation>$W_\\tau$</annotation>\n </semantics></math> be the set of points <span></span><math>\n <semantics>\n <mrow>\n <mi>x</mi>\n <mo>∈</mo>\n <msup>\n <mi>T</mi>\n <mi>d</mi>\n </msup>\n </mrow>\n <annotation>$x\\in \\mathbb {T}^d$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>T</mi>\n <mi>n</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mo>∈</mo>\n <mi>B</mi>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>z</mi>\n <mi>n</mi>\n </msub>\n <mo>,</mo>\n <msup>\n <mi>e</mi>\n <mrow>\n <mo>−</mo>\n <mi>n</mi>\n <mi>τ</mi>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$T^n(x)\\in B(z_n,e^{-n\\tau })$</annotation>\n </semantics></math> for infinitely many <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>∈</mo>\n <mi>N</mi>\n </mrow>\n <annotation>$n\\in \\mathbb {N}$</annotation>\n </semantics></math>. The Hausdorff dimension of <span></span><math>\n <semantics>\n <msub>\n <mi>W</mi>\n <mi>τ</mi>\n </msub>\n <annotation>$W_\\tau$</annotation>\n </semantics></math> has previously been studied by Hill–Velani and Li–Liao–Velani–Zorin. We provide a lower bound on the Hausdorff dimension of <span></span><math>\n <semantics>\n <msub>\n <mi>W</mi>\n <mi>τ</mi>\n </msub>\n <annotation>$W_\\tau$</annotation>\n </semantics></math> for any expanding matrix. For hyperbolic matrices, we compute the dimension of <span></span><math>\n <semantics>\n <msub>\n <mi>W</mi>\n <mi>τ</mi>\n </msub>\n <annotation>$W_\\tau$</annotation>\n </semantics></math> only when <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> is a <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mo>×</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$2 \\times 2$</annotation>\n </semantics></math> matrix. We give counterexamples to a natural candidate for a dimension formula for general dimension <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On shrinking targets for linear expanding and hyperbolic toral endomorphisms\",\"authors\":\"Zhang-nan Hu, Tomas Persson, Wanlou Wu, Yiwei Zhang\",\"doi\":\"10.1112/jlms.70287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> be an invertible <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>×</mo>\\n <mi>d</mi>\\n </mrow>\\n <annotation>$d\\\\times d$</annotation>\\n </semantics></math> matrix with integer elements. Then <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> determines a self-map <span></span><math>\\n <semantics>\\n <mi>T</mi>\\n <annotation>$T$</annotation>\\n </semantics></math> of the <span></span><math>\\n <semantics>\\n <mi>d</mi>\\n <annotation>$d$</annotation>\\n </semantics></math>-dimensional torus <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>T</mi>\\n <mi>d</mi>\\n </msup>\\n <mo>=</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>d</mi>\\n </msup>\\n <mo>/</mo>\\n <msup>\\n <mi>Z</mi>\\n <mi>d</mi>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbb {T}^d=\\\\mathbb {R}^d/\\\\mathbb {Z}^d$</annotation>\\n </semantics></math>. Given a real number <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>τ</mi>\\n <mo>></mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\tau >0$</annotation>\\n </semantics></math>, and a sequence <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>{</mo>\\n <msub>\\n <mi>z</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\lbrace z_n\\\\rbrace$</annotation>\\n </semantics></math> of points in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>T</mi>\\n <mi>d</mi>\\n </msup>\\n <annotation>$\\\\mathbb {T}^d$</annotation>\\n </semantics></math>, let <span></span><math>\\n <semantics>\\n <msub>\\n <mi>W</mi>\\n <mi>τ</mi>\\n </msub>\\n <annotation>$W_\\\\tau$</annotation>\\n </semantics></math> be the set of points <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>x</mi>\\n <mo>∈</mo>\\n <msup>\\n <mi>T</mi>\\n <mi>d</mi>\\n </msup>\\n </mrow>\\n <annotation>$x\\\\in \\\\mathbb {T}^d$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>T</mi>\\n <mi>n</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>∈</mo>\\n <mi>B</mi>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>z</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>,</mo>\\n <msup>\\n <mi>e</mi>\\n <mrow>\\n <mo>−</mo>\\n <mi>n</mi>\\n <mi>τ</mi>\\n </mrow>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$T^n(x)\\\\in B(z_n,e^{-n\\\\tau })$</annotation>\\n </semantics></math> for infinitely many <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>∈</mo>\\n <mi>N</mi>\\n </mrow>\\n <annotation>$n\\\\in \\\\mathbb {N}$</annotation>\\n </semantics></math>. The Hausdorff dimension of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>W</mi>\\n <mi>τ</mi>\\n </msub>\\n <annotation>$W_\\\\tau$</annotation>\\n </semantics></math> has previously been studied by Hill–Velani and Li–Liao–Velani–Zorin. We provide a lower bound on the Hausdorff dimension of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>W</mi>\\n <mi>τ</mi>\\n </msub>\\n <annotation>$W_\\\\tau$</annotation>\\n </semantics></math> for any expanding matrix. For hyperbolic matrices, we compute the dimension of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>W</mi>\\n <mi>τ</mi>\\n </msub>\\n <annotation>$W_\\\\tau$</annotation>\\n </semantics></math> only when <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> is a <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mo>×</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$2 \\\\times 2$</annotation>\\n </semantics></math> matrix. We give counterexamples to a natural candidate for a dimension formula for general dimension <span></span><math>\\n <semantics>\\n <mi>d</mi>\\n <annotation>$d$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70287\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70287","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On shrinking targets for linear expanding and hyperbolic toral endomorphisms
Let be an invertible matrix with integer elements. Then determines a self-map of the -dimensional torus . Given a real number , and a sequence of points in , let be the set of points such that for infinitely many . The Hausdorff dimension of has previously been studied by Hill–Velani and Li–Liao–Velani–Zorin. We provide a lower bound on the Hausdorff dimension of for any expanding matrix. For hyperbolic matrices, we compute the dimension of only when is a matrix. We give counterexamples to a natural candidate for a dimension formula for general dimension .
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.