Second-order regularity for degenerate p $p$ -Laplace type equations with log-concave weights

IF 1.2 2区 数学 Q1 MATHEMATICS
Carlo Alberto Antonini, Giulio Ciraolo, Francesco Pagliarin
{"title":"Second-order regularity for degenerate \n \n p\n $p$\n -Laplace type equations with log-concave weights","authors":"Carlo Alberto Antonini,&nbsp;Giulio Ciraolo,&nbsp;Francesco Pagliarin","doi":"10.1112/jlms.70299","DOIUrl":null,"url":null,"abstract":"<p>We consider weighted <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-Laplace type equations with homogeneous Neumann boundary conditions in convex domains, where the weight is a log-concave function which may degenerate at the boundary. In the case of bounded domains, we provide sharp global second-order estimates. For unbounded domains, we prove local estimates at the boundary. The results are new even for the case <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$p=2$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70299","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70299","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider weighted p $p$ -Laplace type equations with homogeneous Neumann boundary conditions in convex domains, where the weight is a log-concave function which may degenerate at the boundary. In the case of bounded domains, we provide sharp global second-order estimates. For unbounded domains, we prove local estimates at the boundary. The results are new even for the case p = 2 $p=2$ .

Abstract Image

Abstract Image

Abstract Image

具有对数凹权值的退化p$ p$ -拉普拉斯型方程的二阶正则性
考虑凸域上具有齐次Neumann边界条件的加权p$ p$ -拉普拉斯型方程,其中权是一个可能在边界退化的对数凹函数。在有界域的情况下,我们提供了锐利的全局二阶估计。对于无界域,我们证明了边界处的局部估计。即使在p=2$ p=2$的情况下,结果也是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信