黎曼ζ函数在临界线上的平方的相关性

IF 1.2 2区 数学 Q1 MATHEMATICS
Valeriya Kovaleva
{"title":"黎曼ζ函数在临界线上的平方的相关性","authors":"Valeriya Kovaleva","doi":"10.1112/jlms.70289","DOIUrl":null,"url":null,"abstract":"<p>We compute the average of a product of two shifted squares of the Riemann zeta function on the critical line with shifts up to size <span></span><math>\n <semantics>\n <msup>\n <mi>T</mi>\n <mrow>\n <mn>3</mn>\n <mo>/</mo>\n <mn>2</mn>\n <mo>−</mo>\n <mi>ε</mi>\n </mrow>\n </msup>\n <annotation>$T^{3/2-\\varepsilon }$</annotation>\n </semantics></math>. We give an explicit expression for such an average and derive an approximate spectral expansion for the error term similar to Motohashi's. As a consequence, we also compute the (2,2)-moment of moment of the Riemann zeta function, for which we partially verify (and partially refute) a conjecture of Bailey and Keating.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70289","citationCount":"0","resultStr":"{\"title\":\"Correlations of the squares of the Riemann zeta function on the critical line\",\"authors\":\"Valeriya Kovaleva\",\"doi\":\"10.1112/jlms.70289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We compute the average of a product of two shifted squares of the Riemann zeta function on the critical line with shifts up to size <span></span><math>\\n <semantics>\\n <msup>\\n <mi>T</mi>\\n <mrow>\\n <mn>3</mn>\\n <mo>/</mo>\\n <mn>2</mn>\\n <mo>−</mo>\\n <mi>ε</mi>\\n </mrow>\\n </msup>\\n <annotation>$T^{3/2-\\\\varepsilon }$</annotation>\\n </semantics></math>. We give an explicit expression for such an average and derive an approximate spectral expansion for the error term similar to Motohashi's. As a consequence, we also compute the (2,2)-moment of moment of the Riemann zeta function, for which we partially verify (and partially refute) a conjecture of Bailey and Keating.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70289\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70289\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70289","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们计算了Riemann zeta函数的两个移位平方乘积在临界线上的平均值,其移位的大小可达T³/2- ε $T^{3/2-\varepsilon}$。我们给出了这种平均值的显式表达式,并推导了误差项的近似谱展开,类似于Motohashi的。因此,我们还计算了Riemann zeta函数的(2,2)-矩,为此我们部分验证(并部分驳斥)了Bailey和Keating的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Correlations of the squares of the Riemann zeta function on the critical line

Correlations of the squares of the Riemann zeta function on the critical line

Correlations of the squares of the Riemann zeta function on the critical line

We compute the average of a product of two shifted squares of the Riemann zeta function on the critical line with shifts up to size T 3 / 2 ε $T^{3/2-\varepsilon }$ . We give an explicit expression for such an average and derive an approximate spectral expansion for the error term similar to Motohashi's. As a consequence, we also compute the (2,2)-moment of moment of the Riemann zeta function, for which we partially verify (and partially refute) a conjecture of Bailey and Keating.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信