2 $\mathfrak {sl}_{2}$ -晶体的共边界Temperley-Lieb范畴

IF 1.2 2区 数学 Q1 MATHEMATICS
Moaaz Alqady, Mateusz Stroiński
{"title":"2 $\\mathfrak {sl}_{2}$ -晶体的共边界Temperley-Lieb范畴","authors":"Moaaz Alqady,&nbsp;Mateusz Stroiński","doi":"10.1112/jlms.70283","DOIUrl":null,"url":null,"abstract":"<p>By considering a suitable renormalization of the Temperley–Lieb category, we study its specialization to the case <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$q=0$</annotation>\n </semantics></math>. Unlike the <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>≠</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$q\\ne 0$</annotation>\n </semantics></math> case, the obtained monoidal category, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>TL</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {TL}_0(\\mathbb {k})$</annotation>\n </semantics></math>, is not rigid or braided. We provide a closed formula for the Jones–Wenzl projectors in <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>TL</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {TL}_0(\\mathbb {k})$</annotation>\n </semantics></math> and give semisimple bases for its endomorphism algebras. We explain how to obtain the same basis using the representation theory of finite inverse monoids, via the associated Möbius inversion. We then describe a coboundary structure on <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>TL</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {TL}_0(\\mathbb {k})$</annotation>\n </semantics></math> and show that its idempotent completion is coboundary monoidally equivalent to the category of <span></span><math>\n <semantics>\n <msub>\n <mi>sl</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\mathfrak {sl}_{2}$</annotation>\n </semantics></math>-crystals. This gives a diagrammatic description of the commutor for <span></span><math>\n <semantics>\n <msub>\n <mi>sl</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\mathfrak {sl}_{2}$</annotation>\n </semantics></math>-crystals defined by Henriques and Kamnitzer and of the resulting action of the cactus group. We also study fiber functors of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>TL</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {TL}_0(\\mathbb {k})$</annotation>\n </semantics></math> and discuss how they differ from the <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>≠</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$q\\ne 0$</annotation>\n </semantics></math> case.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70283","citationCount":"0","resultStr":"{\"title\":\"A coboundary Temperley–Lieb category for \\n \\n \\n sl\\n 2\\n \\n $\\\\mathfrak {sl}_{2}$\\n -crystals\",\"authors\":\"Moaaz Alqady,&nbsp;Mateusz Stroiński\",\"doi\":\"10.1112/jlms.70283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>By considering a suitable renormalization of the Temperley–Lieb category, we study its specialization to the case <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$q=0$</annotation>\\n </semantics></math>. Unlike the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>≠</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$q\\\\ne 0$</annotation>\\n </semantics></math> case, the obtained monoidal category, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>TL</mi>\\n <mn>0</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathcal {TL}_0(\\\\mathbb {k})$</annotation>\\n </semantics></math>, is not rigid or braided. We provide a closed formula for the Jones–Wenzl projectors in <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>TL</mi>\\n <mn>0</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathcal {TL}_0(\\\\mathbb {k})$</annotation>\\n </semantics></math> and give semisimple bases for its endomorphism algebras. We explain how to obtain the same basis using the representation theory of finite inverse monoids, via the associated Möbius inversion. We then describe a coboundary structure on <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>TL</mi>\\n <mn>0</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathcal {TL}_0(\\\\mathbb {k})$</annotation>\\n </semantics></math> and show that its idempotent completion is coboundary monoidally equivalent to the category of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>sl</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\mathfrak {sl}_{2}$</annotation>\\n </semantics></math>-crystals. This gives a diagrammatic description of the commutor for <span></span><math>\\n <semantics>\\n <msub>\\n <mi>sl</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\mathfrak {sl}_{2}$</annotation>\\n </semantics></math>-crystals defined by Henriques and Kamnitzer and of the resulting action of the cactus group. We also study fiber functors of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>TL</mi>\\n <mn>0</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathcal {TL}_0(\\\\mathbb {k})$</annotation>\\n </semantics></math> and discuss how they differ from the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>≠</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$q\\\\ne 0$</annotation>\\n </semantics></math> case.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70283\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70283\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70283","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

通过考虑一个合适的重整化的Temperley-Lieb范畴,我们研究了它对q=0$ q=0$的专门化。与q≠0$ q\ne 0$的情况不同,得到的一元范畴,TL 0(k)$ \mathcal {TL}_0(\mathbb {k})$,不是刚性的或编织的。给出了TL 0(k)$ \mathcal {TL}_0(\mathbb {k})$中Jones-Wenzl投影的封闭公式,并给出了其自同态代数的半简单基。我们解释如何通过相关的Möbius反演,使用有限逆单群的表示理论来获得相同的基。然后,我们描述了TL 0(k)$ \mathcal {TL}_0(\mathbb {k})$上的一个共边结构,并证明了它的幂等补全是共边单列等价于的范畴2 $\mathfrak {Sl}_{2}$ -crystals。本文给出了由Henriques和Kamnitzer定义的sl 2 $\mathfrak {sl}_{2}$ -晶体的交换子的图解描述,以及由此产生的仙人掌群的作用。我们还研究了TL 0(k)$ \mathcal {TL}_0(\mathbb {k})$的纤维函子,并讨论了它们与q≠0的区别$q\ne 0$ case。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A coboundary Temperley–Lieb category for 
         
            
               sl
               2
            
            $\mathfrak {sl}_{2}$
         -crystals

A coboundary Temperley–Lieb category for 
         
            
               sl
               2
            
            $\mathfrak {sl}_{2}$
         -crystals

A coboundary Temperley–Lieb category for 
         
            
               sl
               2
            
            $\mathfrak {sl}_{2}$
         -crystals

A coboundary Temperley–Lieb category for sl 2 $\mathfrak {sl}_{2}$ -crystals

By considering a suitable renormalization of the Temperley–Lieb category, we study its specialization to the case q = 0 $q=0$ . Unlike the q 0 $q\ne 0$ case, the obtained monoidal category, TL 0 ( k ) $\mathcal {TL}_0(\mathbb {k})$ , is not rigid or braided. We provide a closed formula for the Jones–Wenzl projectors in TL 0 ( k ) $\mathcal {TL}_0(\mathbb {k})$ and give semisimple bases for its endomorphism algebras. We explain how to obtain the same basis using the representation theory of finite inverse monoids, via the associated Möbius inversion. We then describe a coboundary structure on TL 0 ( k ) $\mathcal {TL}_0(\mathbb {k})$ and show that its idempotent completion is coboundary monoidally equivalent to the category of sl 2 $\mathfrak {sl}_{2}$ -crystals. This gives a diagrammatic description of the commutor for sl 2 $\mathfrak {sl}_{2}$ -crystals defined by Henriques and Kamnitzer and of the resulting action of the cactus group. We also study fiber functors of TL 0 ( k ) $\mathcal {TL}_0(\mathbb {k})$ and discuss how they differ from the q 0 $q\ne 0$ case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信