{"title":"2 $\\mathfrak {sl}_{2}$ -晶体的共边界Temperley-Lieb范畴","authors":"Moaaz Alqady, Mateusz Stroiński","doi":"10.1112/jlms.70283","DOIUrl":null,"url":null,"abstract":"<p>By considering a suitable renormalization of the Temperley–Lieb category, we study its specialization to the case <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$q=0$</annotation>\n </semantics></math>. Unlike the <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>≠</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$q\\ne 0$</annotation>\n </semantics></math> case, the obtained monoidal category, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>TL</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {TL}_0(\\mathbb {k})$</annotation>\n </semantics></math>, is not rigid or braided. We provide a closed formula for the Jones–Wenzl projectors in <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>TL</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {TL}_0(\\mathbb {k})$</annotation>\n </semantics></math> and give semisimple bases for its endomorphism algebras. We explain how to obtain the same basis using the representation theory of finite inverse monoids, via the associated Möbius inversion. We then describe a coboundary structure on <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>TL</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {TL}_0(\\mathbb {k})$</annotation>\n </semantics></math> and show that its idempotent completion is coboundary monoidally equivalent to the category of <span></span><math>\n <semantics>\n <msub>\n <mi>sl</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\mathfrak {sl}_{2}$</annotation>\n </semantics></math>-crystals. This gives a diagrammatic description of the commutor for <span></span><math>\n <semantics>\n <msub>\n <mi>sl</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\mathfrak {sl}_{2}$</annotation>\n </semantics></math>-crystals defined by Henriques and Kamnitzer and of the resulting action of the cactus group. We also study fiber functors of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>TL</mi>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {TL}_0(\\mathbb {k})$</annotation>\n </semantics></math> and discuss how they differ from the <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>≠</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$q\\ne 0$</annotation>\n </semantics></math> case.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70283","citationCount":"0","resultStr":"{\"title\":\"A coboundary Temperley–Lieb category for \\n \\n \\n sl\\n 2\\n \\n $\\\\mathfrak {sl}_{2}$\\n -crystals\",\"authors\":\"Moaaz Alqady, Mateusz Stroiński\",\"doi\":\"10.1112/jlms.70283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>By considering a suitable renormalization of the Temperley–Lieb category, we study its specialization to the case <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$q=0$</annotation>\\n </semantics></math>. Unlike the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>≠</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$q\\\\ne 0$</annotation>\\n </semantics></math> case, the obtained monoidal category, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>TL</mi>\\n <mn>0</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathcal {TL}_0(\\\\mathbb {k})$</annotation>\\n </semantics></math>, is not rigid or braided. We provide a closed formula for the Jones–Wenzl projectors in <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>TL</mi>\\n <mn>0</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathcal {TL}_0(\\\\mathbb {k})$</annotation>\\n </semantics></math> and give semisimple bases for its endomorphism algebras. We explain how to obtain the same basis using the representation theory of finite inverse monoids, via the associated Möbius inversion. We then describe a coboundary structure on <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>TL</mi>\\n <mn>0</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathcal {TL}_0(\\\\mathbb {k})$</annotation>\\n </semantics></math> and show that its idempotent completion is coboundary monoidally equivalent to the category of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>sl</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\mathfrak {sl}_{2}$</annotation>\\n </semantics></math>-crystals. This gives a diagrammatic description of the commutor for <span></span><math>\\n <semantics>\\n <msub>\\n <mi>sl</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\mathfrak {sl}_{2}$</annotation>\\n </semantics></math>-crystals defined by Henriques and Kamnitzer and of the resulting action of the cactus group. We also study fiber functors of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>TL</mi>\\n <mn>0</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathcal {TL}_0(\\\\mathbb {k})$</annotation>\\n </semantics></math> and discuss how they differ from the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>≠</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$q\\\\ne 0$</annotation>\\n </semantics></math> case.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70283\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70283\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70283","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A coboundary Temperley–Lieb category for
sl
2
$\mathfrak {sl}_{2}$
-crystals
By considering a suitable renormalization of the Temperley–Lieb category, we study its specialization to the case . Unlike the case, the obtained monoidal category, , is not rigid or braided. We provide a closed formula for the Jones–Wenzl projectors in and give semisimple bases for its endomorphism algebras. We explain how to obtain the same basis using the representation theory of finite inverse monoids, via the associated Möbius inversion. We then describe a coboundary structure on and show that its idempotent completion is coboundary monoidally equivalent to the category of -crystals. This gives a diagrammatic description of the commutor for -crystals defined by Henriques and Kamnitzer and of the resulting action of the cactus group. We also study fiber functors of and discuss how they differ from the case.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.