Pathwise convergence of the Euler scheme for rough and stochastic differential equations

IF 1.2 2区 数学 Q1 MATHEMATICS
Andrew L. Allan, Anna P. Kwossek, Chong Liu, David J. Prömel
{"title":"Pathwise convergence of the Euler scheme for rough and stochastic differential equations","authors":"Andrew L. Allan,&nbsp;Anna P. Kwossek,&nbsp;Chong Liu,&nbsp;David J. Prömel","doi":"10.1112/jlms.70297","DOIUrl":null,"url":null,"abstract":"<p>The convergence of the first-order Euler scheme and an approximative variant thereof, along with convergence rates, are established for rough differential equations driven by càdlàg paths satisfying a suitable criterion, namely the so-called Property (RIE), along time discretizations with vanishing mesh size. This property is then verified for almost all sample paths of Brownian motion, Itô processes, Lévy processes, and general càdlàg semimartingales, as well as the driving signals of both mixed and rough stochastic differential equations, relative to various time discretizations. Consequently, we obtain pathwise convergence in <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-variation of the Euler–Maruyama scheme for stochastic differential equations driven by these processes.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70297","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70297","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The convergence of the first-order Euler scheme and an approximative variant thereof, along with convergence rates, are established for rough differential equations driven by càdlàg paths satisfying a suitable criterion, namely the so-called Property (RIE), along time discretizations with vanishing mesh size. This property is then verified for almost all sample paths of Brownian motion, Itô processes, Lévy processes, and general càdlàg semimartingales, as well as the driving signals of both mixed and rough stochastic differential equations, relative to various time discretizations. Consequently, we obtain pathwise convergence in p $p$ -variation of the Euler–Maruyama scheme for stochastic differential equations driven by these processes.

Abstract Image

Abstract Image

粗糙和随机微分方程的欧拉格式的路径收敛性
对于满足适当准则(即所谓的性质(RIE))的càdlàg路径驱动的粗糙微分方程,随着网格尺寸消失的时间离散化,建立了一阶欧拉格式及其近似变型的收敛性以及收敛率。然后,对于布朗运动、Itô过程、lsamvy过程和一般的càdlàg半鞅过程的几乎所有样本路径,以及相对于各种时间离散化的混合和粗糙随机微分方程的驱动信号,验证了这一性质。因此,我们得到了由这些过程驱动的随机微分方程的Euler-Maruyama格式在p$ p$ -变分中的路径收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信