对角线p$ p$ -排列函子kR k$ kR_k$

IF 1.2 2区 数学 Q1 MATHEMATICS
Serge Bouc
{"title":"对角线p$ p$ -排列函子kR k$ kR_k$","authors":"Serge Bouc","doi":"10.1112/jlms.70285","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> be an algebraically closed field of positive characteristic <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>. We describe the full lattice of subfunctors of the diagonal <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-permutation functor <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <msub>\n <mi>R</mi>\n <mi>k</mi>\n </msub>\n </mrow>\n <annotation>$kR_k$</annotation>\n </semantics></math> obtained by <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-linear extension from the functor <span></span><math>\n <semantics>\n <msub>\n <mi>R</mi>\n <mi>k</mi>\n </msub>\n <annotation>$R_k$</annotation>\n </semantics></math> of linear representations over <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>. This leads to the description of the “composition factors” <span></span><math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>P</mi>\n </msub>\n <annotation>$S_P$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <msub>\n <mi>R</mi>\n <mi>k</mi>\n </msub>\n </mrow>\n <annotation>$kR_k$</annotation>\n </semantics></math>, which are parameterized by finite <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-groups (up to isomorphism), and of the evaluations of these particular simple diagonal <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-permutation functors over <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70285","citationCount":"0","resultStr":"{\"title\":\"The diagonal \\n \\n p\\n $p$\\n -permutation functor \\n \\n \\n k\\n \\n R\\n k\\n \\n \\n $kR_k$\",\"authors\":\"Serge Bouc\",\"doi\":\"10.1112/jlms.70285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math> be an algebraically closed field of positive characteristic <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>. We describe the full lattice of subfunctors of the diagonal <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-permutation functor <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <msub>\\n <mi>R</mi>\\n <mi>k</mi>\\n </msub>\\n </mrow>\\n <annotation>$kR_k$</annotation>\\n </semantics></math> obtained by <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>-linear extension from the functor <span></span><math>\\n <semantics>\\n <msub>\\n <mi>R</mi>\\n <mi>k</mi>\\n </msub>\\n <annotation>$R_k$</annotation>\\n </semantics></math> of linear representations over <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>. This leads to the description of the “composition factors” <span></span><math>\\n <semantics>\\n <msub>\\n <mi>S</mi>\\n <mi>P</mi>\\n </msub>\\n <annotation>$S_P$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <msub>\\n <mi>R</mi>\\n <mi>k</mi>\\n </msub>\\n </mrow>\\n <annotation>$kR_k$</annotation>\\n </semantics></math>, which are parameterized by finite <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-groups (up to isomorphism), and of the evaluations of these particular simple diagonal <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-permutation functors over <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70285\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70285\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70285","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设k$ k$是一个具有正特征p$ p$的代数闭域。我们描述了对角线p$ p$ -置换函子kR k$ kR_k$的子函子的满格,这是由k$ k$ -线性扩展得到的线性表示的rk $R_k$除以k$ k$。这导致了对kR k$ kR_k$的“组成因子”S P$ S_P$的描述,它们是由有限的p$ p$ -群参数化的(直到同构),以及这些特殊的简单对角p$ p$ -置换函子在k$ k$上的求值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The diagonal 
         
            p
            $p$
         -permutation functor 
         
            
               k
               
                  R
                  k
               
            
            $kR_k$

The diagonal 
         
            p
            $p$
         -permutation functor 
         
            
               k
               
                  R
                  k
               
            
            $kR_k$

The diagonal 
         
            p
            $p$
         -permutation functor 
         
            
               k
               
                  R
                  k
               
            
            $kR_k$

The diagonal p $p$ -permutation functor k R k $kR_k$

Let k $k$ be an algebraically closed field of positive characteristic p $p$ . We describe the full lattice of subfunctors of the diagonal p $p$ -permutation functor k R k $kR_k$ obtained by k $k$ -linear extension from the functor R k $R_k$ of linear representations over k $k$ . This leads to the description of the “composition factors” S P $S_P$ of k R k $kR_k$ , which are parameterized by finite p $p$ -groups (up to isomorphism), and of the evaluations of these particular simple diagonal p $p$ -permutation functors over k $k$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信