{"title":"The diagonal \n \n p\n $p$\n -permutation functor \n \n \n k\n \n R\n k\n \n \n $kR_k$","authors":"Serge Bouc","doi":"10.1112/jlms.70285","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> be an algebraically closed field of positive characteristic <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>. We describe the full lattice of subfunctors of the diagonal <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-permutation functor <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <msub>\n <mi>R</mi>\n <mi>k</mi>\n </msub>\n </mrow>\n <annotation>$kR_k$</annotation>\n </semantics></math> obtained by <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-linear extension from the functor <span></span><math>\n <semantics>\n <msub>\n <mi>R</mi>\n <mi>k</mi>\n </msub>\n <annotation>$R_k$</annotation>\n </semantics></math> of linear representations over <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>. This leads to the description of the “composition factors” <span></span><math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>P</mi>\n </msub>\n <annotation>$S_P$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <msub>\n <mi>R</mi>\n <mi>k</mi>\n </msub>\n </mrow>\n <annotation>$kR_k$</annotation>\n </semantics></math>, which are parameterized by finite <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-groups (up to isomorphism), and of the evaluations of these particular simple diagonal <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-permutation functors over <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70285","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70285","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be an algebraically closed field of positive characteristic . We describe the full lattice of subfunctors of the diagonal -permutation functor obtained by -linear extension from the functor of linear representations over . This leads to the description of the “composition factors” of , which are parameterized by finite -groups (up to isomorphism), and of the evaluations of these particular simple diagonal -permutation functors over .
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.