Journal of the London Mathematical Society-Second Series最新文献

筛选
英文 中文
Projective structures with (Quasi-)Hitchin holonomy 具有(准)希钦整体性的投影结构
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-09-30 DOI: 10.1112/jlms.13003
Daniele Alessandrini, Colin Davalo, Qiongling Li
{"title":"Projective structures with (Quasi-)Hitchin holonomy","authors":"Daniele Alessandrini,&nbsp;Colin Davalo,&nbsp;Qiongling Li","doi":"10.1112/jlms.13003","DOIUrl":"https://doi.org/10.1112/jlms.13003","url":null,"abstract":"<p>In this paper, we investigate the properties of the real and complex projective structures associated to Hitchin and quasi-Hitchin representations that were originally constructed using Guichard–Wienhard's theory of domains of discontinuity. We determine the topology of the underlying manifolds and we prove that some of these geometric structures are fibered in a special standard way. In order to prove these results, we give two new ways to construct these geometric structures: we construct them using gauge theory, flat bundles, and Higgs bundles, and we also give a new geometric way to construct them.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small-scale distribution of linear patterns of primes 素数线性模式的小范围分布
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-09-30 DOI: 10.1112/jlms.13001
Mayank Pandey, Katharine Woo
{"title":"Small-scale distribution of linear patterns of primes","authors":"Mayank Pandey,&nbsp;Katharine Woo","doi":"10.1112/jlms.13001","DOIUrl":"https://doi.org/10.1112/jlms.13001","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Ψ</mi>\u0000 <mo>=</mo>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>ψ</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <mi>⋯</mi>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>ψ</mi>\u0000 <mi>t</mi>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>:</mo>\u0000 <mo>`</mo>\u0000 <msup>\u0000 <mi>Z</mi>\u0000 <mi>d</mi>\u0000 </msup>\u0000 <mo>→</mo>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>t</mi>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$Psi =(psi _1,hdots, psi _t):`mathbb {Z}^drightarrow mathbb {R}^t$</annotation>\u0000 </semantics></math> be a system of linear forms with finite complexity. In their seminal paper, Green and Tao showed the following prime number theorem for values of the system <span></span><math>\u0000 <semantics>\u0000 <mi>Ψ</mi>\u0000 <annotation>$Psi$</annotation>\u0000 </semantics></math>:\u0000\u0000 </p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.13001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel non-involutive solutions of the Yang–Baxter equation from (skew) braces 杨-巴克斯特方程的新颖非卷积解来自(倾斜)括号
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-09-30 DOI: 10.1112/jlms.12999
Anastasia Doikou, Bernard Rybołowicz
{"title":"Novel non-involutive solutions of the Yang–Baxter equation from (skew) braces","authors":"Anastasia Doikou,&nbsp;Bernard Rybołowicz","doi":"10.1112/jlms.12999","DOIUrl":"https://doi.org/10.1112/jlms.12999","url":null,"abstract":"<p>We produce novel non-involutive solutions of the Yang–Baxter equation coming from (skew) braces. These solutions are generalisations of the known ones coming from braces and skew braces, and surprisingly in the case of braces, they are not necessarily involutive. In the case of two-sided (skew) braces, one can assign such solutions to every element of the set. Novel bijective maps associated to the inverse solutions are also introduced. Moreover, we show that the recently derived Drinfeld twists of the involutive case are still admissible in the non-involutive frame, and we identify the twisted <span></span><math>\u0000 <semantics>\u0000 <mi>r</mi>\u0000 <annotation>$r$</annotation>\u0000 </semantics></math>-matrices and twisted coproducts. We observe, as in the involutive case, that the underlying quantum algebra is not a quasi-triangular bialgebra, as one would expect, but a quasi-triangular quasi-bialgebra. The same applies to the quantum algebra of the twisted <span></span><math>\u0000 <semantics>\u0000 <mi>r</mi>\u0000 <annotation>$r$</annotation>\u0000 </semantics></math>-matrices, contrary to the involutive case.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12999","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automorphism groups of cubic fivefolds and fourfolds 立方五折和四折的自形群
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-09-27 DOI: 10.1112/jlms.12997
Song Yang, Xun Yu, Zigang Zhu
{"title":"Automorphism groups of cubic fivefolds and fourfolds","authors":"Song Yang,&nbsp;Xun Yu,&nbsp;Zigang Zhu","doi":"10.1112/jlms.12997","DOIUrl":"https://doi.org/10.1112/jlms.12997","url":null,"abstract":"<p>In this paper, we introduce notions of partitionability and characteristic sets of homogeneous polynomials and give a complete classification of groups faithfully acting on smooth cubic fivefolds. Specifically, we prove that there exist 20 maximal ones among all such groups. As an application, we classify all possible subgroups of the automorphism groups of smooth cubic fourfolds.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geometry of Selberg's bisectors in the symmetric space S L ( n , R ) / S O ( n , R ) $SL(n,mathbb {R})/SO(n,mathbb {R})$ 对称空间 S L ( n , R ) / S O ( n , R ) 中塞尔伯格平分线的几何学 $SL(n,mathbb {R})/SO(n,mathbb {R})$
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-09-26 DOI: 10.1112/jlms.12992
Yukun Du
{"title":"Geometry of Selberg's bisectors in the symmetric space \u0000 \u0000 \u0000 S\u0000 L\u0000 (\u0000 n\u0000 ,\u0000 R\u0000 )\u0000 /\u0000 S\u0000 O\u0000 (\u0000 n\u0000 ,\u0000 R\u0000 )\u0000 \u0000 $SL(n,mathbb {R})/SO(n,mathbb {R})$","authors":"Yukun Du","doi":"10.1112/jlms.12992","DOIUrl":"https://doi.org/10.1112/jlms.12992","url":null,"abstract":"<p>I study several problems about the symmetric space associated with the Lie group <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 <mi>L</mi>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>,</mo>\u0000 <mi>R</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$SL(n,mathbb {R})$</annotation>\u0000 </semantics></math>. These problems are connected to an algorithm based on Poincaré's Fundamental Polyhedron Theorem, designed to determine generalized geometric finiteness properties for subgroups of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 <mi>L</mi>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>,</mo>\u0000 <mi>R</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$SL(n,mathbb {R})$</annotation>\u0000 </semantics></math>. The algorithm is analogous to the original one in hyperbolic spaces, while the Riemannian distance is replaced by an <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 <mi>L</mi>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>,</mo>\u0000 <mi>R</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$SL(n,mathbb {R})$</annotation>\u0000 </semantics></math>-invariant premetric. The main results of this paper are twofold. In the first part, I focus on questions that occurred in generalizing Poincaré's Algorithm to my symmetric space. I describe and implement an algorithm that computes the face-poset structure of finitely sided polyhedra, and construct an angle-like function between hyperplanes. In the second part, I study further questions related to hyperplanes and Dirichlet–Selberg domains in my symmetric space. I establish several criteria for the disjointness of hyperplanes and classify particular Abelian subgroups of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 <mi>L</mi>\u0000 <mo>(</mo>\u0000 <mn>3</mn>\u0000 <mo>,</mo>\u0000 <mi>R</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$SL(3,mathbb {R})$</annotation>\u0000 </semantics></math> based on whether their Dirichlet–Selberg domains are finitely sided or not.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On tame ramification and centers of F $F$ -purity 论 F $F$ 纯度的驯服斜面和中心
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-09-26 DOI: 10.1112/jlms.12993
Javier Carvajal-Rojas, Anne Fayolle
{"title":"On tame ramification and centers of \u0000 \u0000 F\u0000 $F$\u0000 -purity","authors":"Javier Carvajal-Rojas,&nbsp;Anne Fayolle","doi":"10.1112/jlms.12993","DOIUrl":"https://doi.org/10.1112/jlms.12993","url":null,"abstract":"<p>We introduce a notion of tame ramification for general finite covers. When specialized to the separable case, it extends to higher dimensions the classical notion of tame ramification for Dedekind domains and curves and sits nicely in between other notions of tame ramification in arithmetic geometry. However, when applied to the Frobenius map, it naturally yields the notion of center of <span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$F$</annotation>\u0000 </semantics></math>-purity (aka compatibly <span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$F$</annotation>\u0000 </semantics></math>-split subvariety). As an application, we describe the behavior of centers of <span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$F$</annotation>\u0000 </semantics></math>-purity under finite covers — it all comes down to a transitivity property for tame ramification in towers.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12993","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymmetric distribution of extreme values of cubic L $L$ -functions at s = 1 $s=1$ 立方 L $L$ 函数极值在 s = 1 $s=1$ 时的非对称分布
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-09-24 DOI: 10.1112/jlms.12996
Pranendu Darbar, Chantal David, Matilde Lalin, Allysa Lumley
{"title":"Asymmetric distribution of extreme values of cubic \u0000 \u0000 L\u0000 $L$\u0000 -functions at \u0000 \u0000 \u0000 s\u0000 =\u0000 1\u0000 \u0000 $s=1$","authors":"Pranendu Darbar,&nbsp;Chantal David,&nbsp;Matilde Lalin,&nbsp;Allysa Lumley","doi":"10.1112/jlms.12996","DOIUrl":"https://doi.org/10.1112/jlms.12996","url":null,"abstract":"<p>We investigate the distribution of values of cubic Dirichlet <span></span><math>\u0000 <semantics>\u0000 <mi>L</mi>\u0000 <annotation>$L$</annotation>\u0000 </semantics></math>-functions at <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>s</mi>\u0000 <mo>=</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$s=1$</annotation>\u0000 </semantics></math>. Following ideas of Granville and Soundararajan for quadratic <span></span><math>\u0000 <semantics>\u0000 <mi>L</mi>\u0000 <annotation>$L$</annotation>\u0000 </semantics></math>-functions, we model the distribution of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>L</mi>\u0000 <mo>(</mo>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mi>χ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$L(1,chi)$</annotation>\u0000 </semantics></math> by the distribution of random Euler products <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>L</mi>\u0000 <mo>(</mo>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mi>X</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$L(1,mathbb {X})$</annotation>\u0000 </semantics></math> for certain family of random variables <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>X</mi>\u0000 <mo>(</mo>\u0000 <mi>p</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$mathbb {X}(p)$</annotation>\u0000 </semantics></math> attached to each prime. We obtain a description of the proportion of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>|</mo>\u0000 <mi>L</mi>\u0000 <mo>(</mo>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mi>χ</mi>\u0000 <mo>)</mo>\u0000 <mo>|</mo>\u0000 </mrow>\u0000 <annotation>$|L(1,chi)|$</annotation>\u0000 </semantics></math> that is larger or that is smaller than a given bound, and yield more light into the Littlewood bounds. Unlike the quadratic case, there is an asymmetry between lower and upper bounds for the cubic case, and small values are less probable than large values.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12996","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational points on complete intersections of cubic and quadric hypersurfaces over F q ( t ) $mathbb {F}_q(t)$ F q ( t ) $mathbb {F}_q(t)$ 上三次方和二次方超曲面完全交点上的有理点
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-09-24 DOI: 10.1112/jlms.12991
Jakob Glas
{"title":"Rational points on complete intersections of cubic and quadric hypersurfaces over \u0000 \u0000 \u0000 \u0000 F\u0000 q\u0000 \u0000 \u0000 (\u0000 t\u0000 )\u0000 \u0000 \u0000 $mathbb {F}_q(t)$","authors":"Jakob Glas","doi":"10.1112/jlms.12991","DOIUrl":"https://doi.org/10.1112/jlms.12991","url":null,"abstract":"<p>Using a two-dimensional version of the delta method, we establish an asymptotic formula for the number of rational points of bounded height on non-singular complete intersections of cubic and quadric hypersurfaces of dimension at least 23 over <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>F</mi>\u0000 <mi>q</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>t</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$mathbb {F}_q(t)$</annotation>\u0000 </semantics></math>, provided <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>char</mo>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>F</mi>\u0000 <mi>q</mi>\u0000 </msub>\u0000 <mo>)</mo>\u0000 <mo>&gt;</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$operatorname{char}(mathbb {F}_q)&amp;gt;3$</annotation>\u0000 </semantics></math>. Under the same hypotheses, we also verify weak approximation.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12991","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Varieties over Q ¯ $overline{mathbb {Q}}$ with infinite Chow groups modulo almost all primes 在几乎所有素数上具有无限周群的 Q ¯$overline{mathbb {Q}}$ 上的变项
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-09-20 DOI: 10.1112/jlms.12994
Federico Scavia
{"title":"Varieties over \u0000 \u0000 \u0000 Q\u0000 ¯\u0000 \u0000 $overline{mathbb {Q}}$\u0000 with infinite Chow groups modulo almost all primes","authors":"Federico Scavia","doi":"10.1112/jlms.12994","DOIUrl":"https://doi.org/10.1112/jlms.12994","url":null,"abstract":"&lt;p&gt;Let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;E&lt;/mi&gt;\u0000 &lt;annotation&gt;$E$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be the Fermat cubic curve over &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mover&gt;\u0000 &lt;mi&gt;Q&lt;/mi&gt;\u0000 &lt;mo&gt;¯&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 &lt;annotation&gt;$overline{mathbb {Q}}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. In 2002, Schoen proved that the group &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;E&lt;/mi&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;/&lt;/mo&gt;\u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$CH^2(E^3)/ell$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is infinite for all primes &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 &lt;mo&gt;≡&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;mod&lt;/mi&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$ell equiv 1pmod 3$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. We show that &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;E&lt;/mi&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;/&lt;/mo&gt;\u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$CH^2(E^3)/ell$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is infinite for all prime numbers &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 &lt;mo&gt;&gt;&lt;/mo&gt;\u0000 &lt;mn&gt;5&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$ell &amp;gt; 5$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. This gives the first example of a smooth projective variety &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;X&lt;/mi&gt;\u0000 &lt;annotation&gt;$X$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; over &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mover&gt;\u0000 &lt;mi&gt;Q&lt;/mi&gt;\u0000 &lt;mo&gt;¯&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 &lt;annotation&gt;$overline{mathbb {Q}}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; such that &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 ","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Countably tight dual ball with a nonseparable measure 具有不可分割度量的可数紧密对偶球
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-09-20 DOI: 10.1112/jlms.12988
Piotr Koszmider, Zdeněk Silber
{"title":"Countably tight dual ball with a nonseparable measure","authors":"Piotr Koszmider,&nbsp;Zdeněk Silber","doi":"10.1112/jlms.12988","DOIUrl":"https://doi.org/10.1112/jlms.12988","url":null,"abstract":"&lt;p&gt;We construct a compact Hausdorff space &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;K&lt;/mi&gt;\u0000 &lt;annotation&gt;$K$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; such that the space &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;P&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;K&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$P(K)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of Radon probability measures on &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;K&lt;/mi&gt;\u0000 &lt;annotation&gt;$K$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; considered with the &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msup&gt;\u0000 &lt;mtext&gt;weak&lt;/mtext&gt;\u0000 &lt;mo&gt;∗&lt;/mo&gt;\u0000 &lt;/msup&gt;\u0000 &lt;annotation&gt;$text{weak}^*$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; topology (induced from the space of continuous functions &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;K&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$C(K)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;) is countably tight that is a generalization of sequentiality (i.e., if a measure &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;μ&lt;/mi&gt;\u0000 &lt;annotation&gt;$mu$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is in the closure of a set &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;annotation&gt;$M$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, there is a countable &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;mo&gt;′&lt;/mo&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;⊆&lt;/mo&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$M^{prime }subseteq M$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; such that &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;μ&lt;/mi&gt;\u0000 &lt;annotation&gt;$mu$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is in the closure of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;mo&gt;′&lt;/mo&gt;\u0000 &lt;/msup&gt;\u0000 &lt;annotation&gt;$M^{prime }$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;) but &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;K&lt;/mi&gt;\u0000 &lt;annotation&gt;$K$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; carries a Radon probability measure that has uncountable Maharam type (i.e., &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;L&lt;/mi&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;μ&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 ","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信