s-弱阶及其格商的几何实现

IF 1.2 2区 数学 Q1 MATHEMATICS
Eva Philippe, Vincent Pilaud
{"title":"s-弱阶及其格商的几何实现","authors":"Eva Philippe,&nbsp;Vincent Pilaud","doi":"10.1112/jlms.70268","DOIUrl":null,"url":null,"abstract":"<p>For an <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-tuple <span></span><math>\n <semantics>\n <mi>s</mi>\n <annotation>${\\bm{s}}$</annotation>\n </semantics></math> of nonnegative integers, the <span></span><math>\n <semantics>\n <mi>s</mi>\n <annotation>${\\bm{s}}$</annotation>\n </semantics></math>-weak order is a lattice structure on <span></span><math>\n <semantics>\n <mi>s</mi>\n <annotation>${\\bm{s}}$</annotation>\n </semantics></math>-trees, generalizing the weak order on permutations. We first describe the join irreducible elements, the canonical join representations, and the forcing order of the <span></span><math>\n <semantics>\n <mi>s</mi>\n <annotation>${\\bm{s}}$</annotation>\n </semantics></math>-weak order in terms of combinatorial objects, generalizing the arcs, the noncrossing arc diagrams, and the subarc order for the weak order. We then extend the theory of shards and shard polytopes to construct geometric realizations of the <span></span><math>\n <semantics>\n <mi>s</mi>\n <annotation>${\\bm{s}}$</annotation>\n </semantics></math>-weak order and all its lattice quotients as polyhedral complexes, generalizing the quotient fans and quotientopes of the weak order.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70268","citationCount":"0","resultStr":"{\"title\":\"Geometric realizations of the s-weak order and its lattice quotients\",\"authors\":\"Eva Philippe,&nbsp;Vincent Pilaud\",\"doi\":\"10.1112/jlms.70268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For an <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>-tuple <span></span><math>\\n <semantics>\\n <mi>s</mi>\\n <annotation>${\\\\bm{s}}$</annotation>\\n </semantics></math> of nonnegative integers, the <span></span><math>\\n <semantics>\\n <mi>s</mi>\\n <annotation>${\\\\bm{s}}$</annotation>\\n </semantics></math>-weak order is a lattice structure on <span></span><math>\\n <semantics>\\n <mi>s</mi>\\n <annotation>${\\\\bm{s}}$</annotation>\\n </semantics></math>-trees, generalizing the weak order on permutations. We first describe the join irreducible elements, the canonical join representations, and the forcing order of the <span></span><math>\\n <semantics>\\n <mi>s</mi>\\n <annotation>${\\\\bm{s}}$</annotation>\\n </semantics></math>-weak order in terms of combinatorial objects, generalizing the arcs, the noncrossing arc diagrams, and the subarc order for the weak order. We then extend the theory of shards and shard polytopes to construct geometric realizations of the <span></span><math>\\n <semantics>\\n <mi>s</mi>\\n <annotation>${\\\\bm{s}}$</annotation>\\n </semantics></math>-weak order and all its lattice quotients as polyhedral complexes, generalizing the quotient fans and quotientopes of the weak order.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70268\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70268\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70268","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于n$ n$ -元组s ${\bm{s}}$的非负整数,s ${\bm{s}}$ -弱序是s ${\bm{s}}$ -树上的晶格结构,推广了排列上的弱序。首先从组合对象的角度描述了s ${\bm{s}}$ -弱序的连接不可约元素、规范连接表示和强制顺序,推广了弱序的弧、非交叉弧图和次弧顺序。然后,我们扩展了分片和分片多面体理论,构造了s ${\bm{s}}$ -弱序及其所有格商作为多面体配合的几何实现,推广了弱序的商扇和商位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Geometric realizations of the s-weak order and its lattice quotients

Geometric realizations of the s-weak order and its lattice quotients

Geometric realizations of the s-weak order and its lattice quotients

Geometric realizations of the s-weak order and its lattice quotients

For an n $n$ -tuple s ${\bm{s}}$ of nonnegative integers, the s ${\bm{s}}$ -weak order is a lattice structure on s ${\bm{s}}$ -trees, generalizing the weak order on permutations. We first describe the join irreducible elements, the canonical join representations, and the forcing order of the s ${\bm{s}}$ -weak order in terms of combinatorial objects, generalizing the arcs, the noncrossing arc diagrams, and the subarc order for the weak order. We then extend the theory of shards and shard polytopes to construct geometric realizations of the s ${\bm{s}}$ -weak order and all its lattice quotients as polyhedral complexes, generalizing the quotient fans and quotientopes of the weak order.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信