{"title":"s-弱阶及其格商的几何实现","authors":"Eva Philippe, Vincent Pilaud","doi":"10.1112/jlms.70268","DOIUrl":null,"url":null,"abstract":"<p>For an <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-tuple <span></span><math>\n <semantics>\n <mi>s</mi>\n <annotation>${\\bm{s}}$</annotation>\n </semantics></math> of nonnegative integers, the <span></span><math>\n <semantics>\n <mi>s</mi>\n <annotation>${\\bm{s}}$</annotation>\n </semantics></math>-weak order is a lattice structure on <span></span><math>\n <semantics>\n <mi>s</mi>\n <annotation>${\\bm{s}}$</annotation>\n </semantics></math>-trees, generalizing the weak order on permutations. We first describe the join irreducible elements, the canonical join representations, and the forcing order of the <span></span><math>\n <semantics>\n <mi>s</mi>\n <annotation>${\\bm{s}}$</annotation>\n </semantics></math>-weak order in terms of combinatorial objects, generalizing the arcs, the noncrossing arc diagrams, and the subarc order for the weak order. We then extend the theory of shards and shard polytopes to construct geometric realizations of the <span></span><math>\n <semantics>\n <mi>s</mi>\n <annotation>${\\bm{s}}$</annotation>\n </semantics></math>-weak order and all its lattice quotients as polyhedral complexes, generalizing the quotient fans and quotientopes of the weak order.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70268","citationCount":"0","resultStr":"{\"title\":\"Geometric realizations of the s-weak order and its lattice quotients\",\"authors\":\"Eva Philippe, Vincent Pilaud\",\"doi\":\"10.1112/jlms.70268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For an <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>-tuple <span></span><math>\\n <semantics>\\n <mi>s</mi>\\n <annotation>${\\\\bm{s}}$</annotation>\\n </semantics></math> of nonnegative integers, the <span></span><math>\\n <semantics>\\n <mi>s</mi>\\n <annotation>${\\\\bm{s}}$</annotation>\\n </semantics></math>-weak order is a lattice structure on <span></span><math>\\n <semantics>\\n <mi>s</mi>\\n <annotation>${\\\\bm{s}}$</annotation>\\n </semantics></math>-trees, generalizing the weak order on permutations. We first describe the join irreducible elements, the canonical join representations, and the forcing order of the <span></span><math>\\n <semantics>\\n <mi>s</mi>\\n <annotation>${\\\\bm{s}}$</annotation>\\n </semantics></math>-weak order in terms of combinatorial objects, generalizing the arcs, the noncrossing arc diagrams, and the subarc order for the weak order. We then extend the theory of shards and shard polytopes to construct geometric realizations of the <span></span><math>\\n <semantics>\\n <mi>s</mi>\\n <annotation>${\\\\bm{s}}$</annotation>\\n </semantics></math>-weak order and all its lattice quotients as polyhedral complexes, generalizing the quotient fans and quotientopes of the weak order.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70268\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70268\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70268","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Geometric realizations of the s-weak order and its lattice quotients
For an -tuple of nonnegative integers, the -weak order is a lattice structure on -trees, generalizing the weak order on permutations. We first describe the join irreducible elements, the canonical join representations, and the forcing order of the -weak order in terms of combinatorial objects, generalizing the arcs, the noncrossing arc diagrams, and the subarc order for the weak order. We then extend the theory of shards and shard polytopes to construct geometric realizations of the -weak order and all its lattice quotients as polyhedral complexes, generalizing the quotient fans and quotientopes of the weak order.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.