On 3-graphs with vanishing codegree Turán density

IF 1.2 2区 数学 Q1 MATHEMATICS
Laihao Ding, Ander Lamaison, Hong Liu, Shuaichao Wang, Haotian Yang
{"title":"On 3-graphs with vanishing codegree Turán density","authors":"Laihao Ding,&nbsp;Ander Lamaison,&nbsp;Hong Liu,&nbsp;Shuaichao Wang,&nbsp;Haotian Yang","doi":"10.1112/jlms.70281","DOIUrl":null,"url":null,"abstract":"<p>For a <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-uniform hypergraph (or simply <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-graph) <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>, the codegree Turán density <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mi>co</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\pi _{\\mathrm{co}}(F)$</annotation>\n </semantics></math> is the supremum over all <span></span><math>\n <semantics>\n <mi>α</mi>\n <annotation>$\\alpha$</annotation>\n </semantics></math> such that there exist arbitrarily large <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-vertex <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>-free <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-graphs <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math> in which every <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(k-1)$</annotation>\n </semantics></math>-subset of <span></span><math>\n <semantics>\n <mrow>\n <mi>V</mi>\n <mo>(</mo>\n <mi>H</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$V(H)$</annotation>\n </semantics></math> is contained in at least <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mi>n</mi>\n </mrow>\n <annotation>$\\alpha n$</annotation>\n </semantics></math> edges. In this paper, we study the problem of what 3-graphs <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math> satisfy <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mi>co</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\pi _{\\mathrm{co}}(F)=0$</annotation>\n </semantics></math>. We find that this is closely related to the uniform Turán density <span></span><math></math>, which is the supremum over all <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math> such that there are infinitely many <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>-free <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-graphs <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math> satisfying that any induced linear-size subhypergraph of <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math> has edge density at least <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>. We prove that, for every 3-graph <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mi>co</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\pi _{\\mathrm{co}}(F)=0$</annotation>\n </semantics></math> implies <span></span><math></math>. We also introduce a layered structure for 3-graphs which allows us to obtain the reverse implication: Every layered 3-graph <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math> with <span></span><math></math> satisfies <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mi>co</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\pi _{\\mathrm{co}}(F)=0$</annotation>\n </semantics></math>. Along the way, we answer in the negative a question of Falgas-Ravry, Pikhurko, Vaughan, and Volec [J. Lond. Math. Soc. (2) <b>107</b> (2023), 1660–1691] about whether <span></span><math></math> always holds. In particular, we construct counterexamples <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math> with positive but arbitrarily small <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mi>co</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\pi _{\\mathrm{co}}(F)$</annotation>\n </semantics></math> while having <span></span><math></math>. Our proof relies on a random geometric construction, graph distributions, Ramsey's theorem and a new formulation of the characterization of 3-graphs with vanishing uniform Turán density due to Reiher, Rödl, and Schacht [J. Lond. Math. Soc. <b>97</b> (2018), no. 1, 77–97].</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70281","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a k $k$ -uniform hypergraph (or simply k $k$ -graph) F $F$ , the codegree Turán density π co ( F ) $\pi _{\mathrm{co}}(F)$ is the supremum over all α $\alpha$ such that there exist arbitrarily large n $n$ -vertex F $F$ -free k $k$ -graphs H $H$ in which every ( k 1 ) $(k-1)$ -subset of V ( H ) $V(H)$ is contained in at least α n $\alpha n$ edges. In this paper, we study the problem of what 3-graphs F $F$ satisfy π co ( F ) = 0 $\pi _{\mathrm{co}}(F)=0$ . We find that this is closely related to the uniform Turán density , which is the supremum over all d $d$ such that there are infinitely many F $F$ -free k $k$ -graphs H $H$ satisfying that any induced linear-size subhypergraph of H $H$ has edge density at least d $d$ . We prove that, for every 3-graph F $F$ , π co ( F ) = 0 $\pi _{\mathrm{co}}(F)=0$ implies . We also introduce a layered structure for 3-graphs which allows us to obtain the reverse implication: Every layered 3-graph F $F$ with satisfies π co ( F ) = 0 $\pi _{\mathrm{co}}(F)=0$ . Along the way, we answer in the negative a question of Falgas-Ravry, Pikhurko, Vaughan, and Volec [J. Lond. Math. Soc. (2) 107 (2023), 1660–1691] about whether always holds. In particular, we construct counterexamples F $F$ with positive but arbitrarily small π co ( F ) $\pi _{\mathrm{co}}(F)$ while having . Our proof relies on a random geometric construction, graph distributions, Ramsey's theorem and a new formulation of the characterization of 3-graphs with vanishing uniform Turán density due to Reiher, Rödl, and Schacht [J. Lond. Math. Soc. 97 (2018), no. 1, 77–97].

Abstract Image

Abstract Image

在余度消失的3图上Turán密度
对于k $k$ -一致超图(或简称k $k$ -图)F $F$,余度Turán密度π co (F) $\pi _{\mathrm{co}}(F)$是所有α $\alpha$上的最大值,使得存在任意大的n $n$-顶点F $F$自由k $k$ -图H $H$其中每个(k−1)$(k-1)$ - V的子集(H) $V(H)$包含在至少α n条$\alpha n$边中。本文研究了3-图F $F$满足π co (F) = 0 $\pi _{\mathrm{co}}(F)=0$的问题。我们发现这与均匀的Turán密度密切相关,它是所有d上的最大值$d$使得有无限多个F $F$自由k $k$ -图H $H$满足H的任何诱导线性大小的子超图$H$边缘密度至少为d $d$。我们证明了,对于每一个3-graph F $F$, π co (F) = 0 $\pi _{\mathrm{co}}(F)=0$意味着。我们还引入了3图的分层结构,这使我们能够获得相反的含义:每层3-图F $F$满足π co (F) = 0 $\pi _{\mathrm{co}}(F)=0$。在此过程中,我们以否定的方式回答了Falgas-Ravry, Pikhurko, Vaughan和Volec的问题[J]。很长。数学。Soc。(2) 107(2023), 1660-1691]是否总是成立。特别地,我们构造反例F $F$具有正但任意小的π co (F) $\pi _{\mathrm{co}}(F)$。我们的证明依赖于随机几何结构、图分布、Ramsey定理以及Reiher, Rödl和Schacht提出的具有消失均匀密度Turán的3-图表征的新公式[J]。很长。数学。Soc. 97 (2018), no。[j]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信