Arithmetic degree and its application to Zariski dense orbit conjecture

IF 1.2 2区 数学 Q1 MATHEMATICS
Yohsuke Matsuzawa, Junyi Xie
{"title":"Arithmetic degree and its application to Zariski dense orbit conjecture","authors":"Yohsuke Matsuzawa,&nbsp;Junyi Xie","doi":"10.1112/jlms.70282","DOIUrl":null,"url":null,"abstract":"<p>We prove that for a dominant rational self-map <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> on a quasi-projective variety defined over <span></span><math>\n <semantics>\n <mover>\n <mi>Q</mi>\n <mo>¯</mo>\n </mover>\n <annotation>$\\overline{\\mathbb {Q}}$</annotation>\n </semantics></math>, there is a point whose <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math>-orbit is well-defined and its arithmetic degree is arbitrarily close to the first dynamical degree of <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math>. As an application, we prove that Zariski dense orbit conjecture holds for a birational map defined over <span></span><math>\n <semantics>\n <mover>\n <mi>Q</mi>\n <mo>¯</mo>\n </mover>\n <annotation>$\\overline{\\mathbb {Q}}$</annotation>\n </semantics></math> whose first dynamical degree is strictly larger than its third dynamical degree. In particular, the conjecture holds for birational maps on threefolds whose first dynamical is degree greater than 1.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70282","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that for a dominant rational self-map f $f$ on a quasi-projective variety defined over Q ¯ $\overline{\mathbb {Q}}$ , there is a point whose f $f$ -orbit is well-defined and its arithmetic degree is arbitrarily close to the first dynamical degree of f $f$ . As an application, we prove that Zariski dense orbit conjecture holds for a birational map defined over Q ¯ $\overline{\mathbb {Q}}$ whose first dynamical degree is strictly larger than its third dynamical degree. In particular, the conjecture holds for birational maps on threefolds whose first dynamical is degree greater than 1.

Abstract Image

Abstract Image

算术度及其在Zariski稠密轨道猜想中的应用
我们证明了在Q¯$\overline{\mathbb {Q}}$上定义的拟射精簇上的一个占优有理自映射f$ f$,存在一个点,其f$ f$轨道是定义良好的,其算术次任意接近f$ f$的第一个动力学次。作为一个应用,我们证明了在Q¯$\overline{\mathbb {Q}}$上定义的一阶动态次严格大于其第三阶动态次的二元映射的Zariski密集轨道猜想成立。特别地,对于第一动力度大于1的三折线上的二元映射,这个猜想成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信