Affine and cyclotomic webs

IF 1.2 2区 数学 Q1 MATHEMATICS
Linliang Song, Weiqiang Wang
{"title":"Affine and cyclotomic webs","authors":"Linliang Song,&nbsp;Weiqiang Wang","doi":"10.1112/jlms.70278","DOIUrl":null,"url":null,"abstract":"<p>Generalizing the polynomial web category, we introduce a diagrammatic <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$\\mathbb {k}$</annotation>\n </semantics></math>-linear monoidal category, <i>the affine web category</i>, for any commutative ring <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$\\mathbb {k}$</annotation>\n </semantics></math>. Integral bases consisting of elementary diagrams are obtained for the affine web category and its cyclotomic quotient categories. Connections between cyclotomic web categories and finite <span></span><math>\n <semantics>\n <mi>W</mi>\n <annotation>$W$</annotation>\n </semantics></math>-algebras are established, leading to a diagrammatic presentation of idempotent subalgebras of <span></span><math>\n <semantics>\n <mi>W</mi>\n <annotation>$W$</annotation>\n </semantics></math>-Schur algebras introduced by Brundan–Kleshchev. The affine web category will be used as a basic building block of another <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$\\mathbb {k}$</annotation>\n </semantics></math>-linear monoidal category, <i>the affine Schur category</i>, formulated in a sequel.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70278","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Generalizing the polynomial web category, we introduce a diagrammatic k $\mathbb {k}$ -linear monoidal category, the affine web category, for any commutative ring k $\mathbb {k}$ . Integral bases consisting of elementary diagrams are obtained for the affine web category and its cyclotomic quotient categories. Connections between cyclotomic web categories and finite W $W$ -algebras are established, leading to a diagrammatic presentation of idempotent subalgebras of W $W$ -Schur algebras introduced by Brundan–Kleshchev. The affine web category will be used as a basic building block of another k $\mathbb {k}$ -linear monoidal category, the affine Schur category, formulated in a sequel.

Abstract Image

Abstract Image

仿射和切环网
推广多项式网范畴,对任意可交换环k $\mathbb {k}$引入一个图k $\mathbb {k}$线性一元范畴仿射网范畴。得到了仿射网类及其环商类由初等图组成的积分基。建立了分环网范畴与有限W$ W$ -代数之间的联系,得到了Brundan-Kleshchev引入的W$ W$ -Schur代数的幂等子代数的图解表示。仿射网络范畴将被用作另一个k $\mathbb {k}$线性一元范畴的基本构建块,仿射舒尔范畴,在续集中表述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信