On fixed-point-free involutions in actions of finite exceptional groups of Lie type

IF 1.2 2区 数学 Q1 MATHEMATICS
Timothy C. Burness, Mikko Korhonen
{"title":"On fixed-point-free involutions in actions of finite exceptional groups of Lie type","authors":"Timothy C. Burness,&nbsp;Mikko Korhonen","doi":"10.1112/jlms.70263","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> be a nontrivial transitive permutation group on a finite set <span></span><math>\n <semantics>\n <mi>Ω</mi>\n <annotation>$\\Omega$</annotation>\n </semantics></math>. By a classical theorem of Jordan, <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> contains a derangement, which is an element with no fixed points on <span></span><math>\n <semantics>\n <mi>Ω</mi>\n <annotation>$\\Omega$</annotation>\n </semantics></math>. Given a prime divisor <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>Ω</mi>\n <mo>|</mo>\n </mrow>\n <annotation>$|\\Omega |$</annotation>\n </semantics></math>, we say that <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math>-elusive if it does not contain a derangement of order <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math>. In a paper from 2011, Burness, Giudici, and Wilson essentially reduce the classification of the <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math>-elusive primitive groups to the case where <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> is an almost simple group of Lie type. The classical groups with an <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math>-elusive socle have been determined by Burness and Giudici, and in this paper, we consider the analogous problem for the exceptional groups of Lie type, focussing on the special case <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$r=2$</annotation>\n </semantics></math>. Our main theorem describes all the almost simple primitive exceptional groups with a 2-elusive socle. In other words, we determine the pairs <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>,</mo>\n <mi>M</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(G,M)$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> is an almost simple exceptional group of Lie type with socle <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> is a core-free maximal subgroup that intersects every conjugacy class of involutions in <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math>. Our results are conclusive, with the exception of a finite list of undetermined cases for <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mo>=</mo>\n <msub>\n <mi>E</mi>\n <mn>8</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>q</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$T = E_8(q)$</annotation>\n </semantics></math>, which depend on the existence (or otherwise) of certain almost simple maximal subgroups of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> that have not yet been completely classified.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70263","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70263","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G $G$ be a nontrivial transitive permutation group on a finite set Ω $\Omega$ . By a classical theorem of Jordan, G $G$ contains a derangement, which is an element with no fixed points on Ω $\Omega$ . Given a prime divisor r $r$ of | Ω | $|\Omega |$ , we say that G $G$ is r $r$ -elusive if it does not contain a derangement of order r $r$ . In a paper from 2011, Burness, Giudici, and Wilson essentially reduce the classification of the r $r$ -elusive primitive groups to the case where G $G$ is an almost simple group of Lie type. The classical groups with an r $r$ -elusive socle have been determined by Burness and Giudici, and in this paper, we consider the analogous problem for the exceptional groups of Lie type, focussing on the special case r = 2 $r=2$ . Our main theorem describes all the almost simple primitive exceptional groups with a 2-elusive socle. In other words, we determine the pairs ( G , M ) $(G,M)$ , where G $G$ is an almost simple exceptional group of Lie type with socle T $T$ and M $M$ is a core-free maximal subgroup that intersects every conjugacy class of involutions in T $T$ . Our results are conclusive, with the exception of a finite list of undetermined cases for T = E 8 ( q ) $T = E_8(q)$ , which depend on the existence (or otherwise) of certain almost simple maximal subgroups of G $G$ that have not yet been completely classified.

Abstract Image

Abstract Image

李型有限例外群作用的不动点自由对合
设G$ G$是有限集合Ω $\ Ω $上的非平凡传递置换群。根据Jordan的经典定理,G$ G$包含一个无序,它是一个在Ω $\Omega$上没有不动点的元素。给定| Ω |$ |\ |$的素数r$ r$,我们说G$ G$是r$ r$ -难以捉摸的,如果它不包含r$ r$的无序。Burness, Giudici, and Wilson在2011年的一篇论文中,将r$ r$ -难以捉摸的原始群的分类本质上简化为G$ G$是一个Lie型的几乎简单群。Burness和Giudici已经确定了r$ r$ -难以捉摸的经典群,本文考虑了Lie型例外群的类似问题,重点讨论了特例r=2$ r=2$。我们的主要定理描述了所有具有2-难以捉摸社会的几乎简单原始例外群。换句话说,我们确定(G,M)$ (G,M)$对,其中G$ G$是一个具有集合T$ T$的Lie型的几乎简单例外群,M$ M$是一个与T$ T$中所有对合的共轭类相交的无核极大子群。我们的结果是结论性的,除了T = e8 (q)$ T = E_8(q)$的一个有限列表的未确定情况。它们依赖于G$ G$的某些尚未完全分类的几乎简单极大子群的存在(或不存在)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信